Wind Turbine Aerodynamic Braking System Analysis Using Chord Wise Spacing

2015 ◽  
Vol 787 ◽  
pp. 217-221 ◽  
Author(s):  
B. Navin Kumar ◽  
K.M. Parammasivam

Wind energy is one of the most significant renewable energy sources in the world. It is the only promising renewable energy resource that only can satisfy the nation’s energy requirements over the growing demand for electricity. Wind turbines have been installed all over the wind potential areas to generate electricity. The wind turbines are designed to operate at a rated wind velocity. When the wind turbines are exposed to extreme wind velocities such as storm or hurricane, the wind turbine rotates at a higher speed that affects the structural stability of the entire system and may topple the system. Mechanical braking systems and Aerodynamic braking systems have been currently used to control the over speeding of the wind turbine at extreme wind velocity. As a novel approach, it is attempted to control the over speeding of the wind turbine by aerodynamic braking system by providing the chord wise spacing (opening). The turbine blade with chord wise spacing alters the pressure distribution over the turbine blade that brings down the rotational speed of the wind turbine within the allowable limit. In this approach, the over speeding of the wind turbine blades are effectively controlled without affecting the power production. In this paper the different parameters of the chord wise spacing such as position of the spacing, shape of the spacing, width of the spacing and impact on power generation are analyzed and the spacing parameters are experimentally optimized.

Author(s):  
Marcus Wiens ◽  
Sebastian Frahm ◽  
Philipp Thomas ◽  
Shoaib Kahn

AbstractRequirements for the design of wind turbines advance facing the challenges of a high content of renewable energy sources in the public grid. A high percentage of renewable energy weaken the grid and grid faults become more likely, which add additional loads on the wind turbine. Load calculations with aero-elastic models are standard for the design of wind turbines. Components of the electric system are usually roughly modeled in aero-elastic models and therefore the effect of detailed electrical models on the load calculations is unclear. A holistic wind turbine model is obtained, by combining an aero-elastic model and detailed electrical model into one co-simulation. The holistic model, representing a DFIG turbine is compared to a standard aero-elastic model for load calculations. It is shown that a detailed modelling of the electrical components e.g., generator, converter, and grid, have an influence on the results of load calculations. An analysis of low-voltage-ride-trough events during turbulent wind shows massive increase of loads on the drive train and effects the tower loads. Furthermore, the presented holistic model could be used to investigate different control approaches on the wind turbine dynamics and loads. This approach is applicable to the modelling of a holistic wind park to investigate interaction on the electrical level and simultaneously evaluate the loads on the wind turbine.


Author(s):  
R. S. Amano ◽  
Ryan J. Malloy

Recently there has been an increase in the demand for the utilization of clean renewable energy sources. This is a direct result of a rise in oil prices and an increased awareness of human induced climate change. Wind energy has been shown to be one of the most promising sources of renewable energy. With current technology, the low cost of wind energy is competitive with more conventional sources of energy such as coal. This however is only true in areas of high wind density. These areas are not as abundant and therefore the number of profitable sites is limited. This paper explores the possibility increasing the number of profitable sites by optimizing wind turbine blade design for low wind speed areas. The two methods of optimization that are investigated are first, optimizing the angle of attack and chord length for a given airfoil cross section at different positions along the blade and second implementing a swept blade profile. The torque generated from a blade using only the first optimization technique is compared to that generated from a blade using both techniques as well as that generated by NTK500/41 turbine using LM19.1 blades. Performance will be investigated using the CFD solver FLUENT.


2019 ◽  
Vol 01 (02) ◽  
pp. 198-203 ◽  
Author(s):  
Mamer Dahbi ◽  
Mebrouk Sellam ◽  
Ali Benatiallah ◽  
Abdelkader HARROUZ ◽  
◽  
...  

The wind energy is one of the most significant and rapidly developing renewable energy sources in the world and it provides a clean energy resource, which is a promising alternative in the short term in Algeria. The main purpose of this paper is to present, the wind potential in Bechar (Southwest of Algeria) and to discuss the potential for electricity generation based on the local weather data for different heights and typical wind turbine characteristics. A case studied investigation allows wind speed and wind power density to be obtained using different hub heights, and the annual power generated and annual operating hours by the wind turbine to be simulated.


Author(s):  
Kishor Sontakke ◽  
Samir Deshmukh ◽  
Sandip Patil

The growing demand for electrical energy for industrial and domestic use, coupled with the limited amount of available fossil fuel reserves and its negative effects on the environment, have made it necessary to seek alternative and renewable energy sources. The use of renewable energy is promoted worldwide to be less dependent on conventional fuels and nuclear energy. Therefore research in the field is motivated to increase efficiency of renewable energy systems. This study aimed to study potential of micro wind turbine and velocity profile through shroud for low wind speeds. Although there is a greater inclination to use solar panels because of the local weather conditions, there are some practical implications that have place the use of solar panels in certain areas to an end. The biggest problem is panel stealing. Also, in some parts of the country the weather is more appropriate to apply wind turbines. Thus, this study paying attention on the design of a new concept to improve wind turbines to be appropriate for the low wind speeds in India. The concept involves the implementation of a concentrator and diffuser to a wind turbine, to increase the power coefficient. Although the wind turbine was not tested for starting speeds, the realization of the shroud should contribute to improved starting of the wind turbine at lower wind speeds. The configuration were not manufactured, but simulated with the use of a program to obtain the power production of the wind turbine over a range of wind speeds. These values were compared to measured results of an open wind turbine developed. The most important topic at hand when dealing with a shrouded wind turbine is to find out if the overall diameter or the blade diameter of the turbine should be the point of reference. As the wind turbine is situated in a shroud that has a larger diameter than the turbine blades, some researchers believe that the overall diameter should be used to calculate the efficiency. The benefits of shrouded wind turbines are discussed.


Author(s):  
C. Kurt ◽  
B. Yelmen ◽  
M. T. Çakir

In parallel with the rapid increase in energy consumption today, it is known that conventional energy resources will be exhausted in the near future. Renewable energy sources are becoming more important today with decreasing available fossil resources and increasing energy needs. Wind energy is a clean and renewable energy source and has a remarkable importance. Wind energy is one of the most important renewable energy sources, whose technology and use have developed rapidly and their economy has become competitive with fossil energy sources. The systems that convert the energy in the wind into electrical energy are wind turbines. Wind turbines are classified according to their rotational axes, revolutions, powers, number of wings, wind effect, gear characteristics and installation locations. Energy has become one of the most important problems of the world countries today. Energy demand, as in many countries, is increasing with each passing day in Turkey. For this reason, solutions are sought to provide the energy needed in a timely, sufficient and reliable manner. The energy needed in these solution suggestions should be provided from domestic production opportunities and local energy sources as much as possible. In this study, usability of wind energy is tried to be revealed in Osmaniye province and its surroundings. When the wind map studies in Turkey are examined, in Osmaniye Province it has been found that the presence of wind potential, it is necessary to increase the number of WPP to benefit more from the potential of wind energy.


2021 ◽  
Vol 14 (2) ◽  
pp. 118-124
Author(s):  
Shinta Dwi Oktaviani ◽  
Reza Setiawan ◽  
Farradina Choria Suci

Energy needs in Indonesia continue to increase, while the availability of non-renewable energy sources is decreasing and is exacerbated by the increasing use of fuels that are not environmentally friendly, so efforts are needed to find alternative uses of renewable energy that are renewable and environmentally friendly. The Cirebon coast has good wind conditions which can be used to create renewable energy sources through the wind. This study aims to utilize the energy that is already available by designing a horizontal wind turbine blade. The method used starts from literature study, selecting airfoils, analyzing data, selecting the best airfoils, analyzing the best airfoils and ending with design drawings. The initial data used as the initial design is the Cirebon City wind data which has the highest average wind speed of 9 m/s. This study designed a horizontal wind turbine blade using QBlade Software with 3 types of NACA, NACA 4415, 6412 and 6415. NACA 6415 has a power coefficient of 0.40%, the highest coefficient is then obtained NACA 6412 with a coefficient of 0.41%, and The highest power coefficient was obtained by NACA 4415 with a coefficient of 44%


2021 ◽  
Vol 13 (5) ◽  
pp. 2862
Author(s):  
Amer Al-Hinai ◽  
Yassine Charabi ◽  
Seyed H. Aghay Kaboli

Despite the long shoreline of Oman, the wind energy industry is still confined to onshore due to the lack of knowledge about offshore wind potential. A spatial-temporal wind data analysis is performed in this research to find the locations in Oman’s territorial seas with the highest potential for offshore wind energy. Thus, wind data are statistically analyzed for assessing wind characteristics. Statistical analysis of wind data include the wind power density, and Weibull scale and shape factors. In addition, there is an estimation of the possible energy production and capacity factor by three commercial offshore wind turbines suitable for 80 up to a 110 m hub height. The findings show that offshore wind turbines can produce at least 1.34 times more energy than land-based and nearshore wind turbines. Additionally, offshore wind turbines generate more power in the Omani peak electricity demand during the summer. Thus, offshore wind turbines have great advantages over land-based wind turbines in Oman. Overall, this work provides guidance on the deployment and production of offshore wind energy in Oman. A thorough study using bankable wind data along with various logistical considerations would still be required to turn offshore wind potential into real wind farms in Oman.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 903 ◽  
Author(s):  
Ivan Trifonov ◽  
Dmitry Trukhan ◽  
Yury Koshlich ◽  
Valeriy Prasolov ◽  
Beata Ślusarczyk

In this study we aimed to determine the extent to which changes in the share of renewable energy sources, their structural complex, and the level of energy security in Eastern Europe, Caucasus and Central Asia (EECCA) countries in the medium- and long-term are interconnected. The study was performed through modeling and determination of the structural characteristics of energy security in the countries. The methodology of the approach to modeling was based on solving the problem of nonlinear optimization by selecting a certain scenario. For the study, the data of EECCA countries were used. The ability of EECCA countries to benefit from long-term indirect and induced advantages of the transformation period depends on the extent to which their domestic supply chains facilitate the deployment of energy transformation and induced economic activity. This study provides an opportunity to assess the degree of influence of renewable energy sources on the level of energy security of countries in the context of energy resource diversification. The high degree of influence of renewable energy sources on energy security in the EECCA countries has been proven in the implementation of the developed scenarios for its increase. Energy security is growing. At the same time, its level depends not only on an increase in the share of renewable sources but also on the structure of energy resources complex of countries, and the development of various renewable energy sources. Therefore, today the EECCA countries are forced not only to increase the share of renewable energy sources but also to attach strategic importance to the structural content of their energy complex.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yiannis A. Katsigiannis ◽  
George S. Stavrakakis ◽  
Christodoulos Pharconides

This paper examines the effect of different wind turbine classes on the electricity production of wind farms in two areas of Cyprus Island, which present low and medium wind potentials: Xylofagou and Limassol. Wind turbine classes determine the suitability of installing a wind turbine in a particulate site. Wind turbine data from five different manufacturers have been used. For each manufacturer, two wind turbines with identical rated power (in the range of 1.5 MW–3 MW) and different wind turbine classes (IEC II and IEC III) are compared. The results show the superiority of wind turbines that are designed for lower wind speeds (IEC III class) in both locations, in terms of energy production. This improvement is higher for the location with the lower wind potential and starts from 7%, while it can reach more than 50%.


Sign in / Sign up

Export Citation Format

Share Document