Design of Face Gear Drive with Spur Pinion and Experimental Test

2010 ◽  
Vol 42 ◽  
pp. 408-412
Author(s):  
Jing Lin Tong ◽  
Yun Bo Shen ◽  
Xiao Bo Wang

Based on the technology of face gear shaping, the tooth surface design and geometry were investigated that include tooth generation, limiting inner and outer radii. The computer were applied to simulated tooth contact analysis and transmission ratio of gear drive. A novice method is proposed for face gear generated by use of a general shaper. A face gear with 77 teeth was generated successfully by the shaper. For the purpose to certificate the bearing contact of gear drive, an experimental investigation was also developed in the bevel gear meshing machine. The results show the experimental bearing contact of face gear drive is correspondence to the computerized design, which validated the feasibility of face gear shaping by a general shaper.

2010 ◽  
Vol 29-32 ◽  
pp. 1711-1716
Author(s):  
Shu Yan Zhang ◽  
Hui Guo

A double direction modification with a grinding worm is applied on tooth surface of face gear drive. The surface equations of the rack cutter, shaper and grinding worm are derived respectively. Loaded tooth contact analysis (LTCA) with finite element method (FEM) is performed to investigate the meshing performance of face gear drive before modification and after modification. The modification by a grinding worm can obviously reduce the sensitivity of face gear drive to misalignment; the bending stress and the contact stress are reduced with avoiding edge contact; the load transmission error is reduced. This method can obtain a more stable bearing contact in contrast to the method by increasing tooth number of shaper, and the modification magnitude can be controlled freely. The investigation is illustrated with numerical examples.


2010 ◽  
Vol 139-141 ◽  
pp. 1154-1157 ◽  
Author(s):  
Hui Guo ◽  
Ning Zhao ◽  
Hao Gao

This paper proposes a modification method for tooth surface of face gear drive with a grinding worm on a numerical grinding machine. The surface equation of grinding worm is derived, and the coordinate System of generating the worm is established. Tooth contact analysis (TCA) is performed to investigate the performance of face gear drive before and after modification, and the alignment error is considered. This method can obtain a more stable bearing contact in contrast to the method by increasing tooth number of shaper. The longitudinal bearing contact on the face-gear tooth surface has been obtained which will increase the contact ratio. By modification the edge contact at surface edges of the gears can be avoided and the modification magnitude can be controlled freely.


2011 ◽  
Vol 86 ◽  
pp. 39-42
Author(s):  
Xiang Wei Cai ◽  
Zong De Fang ◽  
Jin Zhan Su

The generating of face gear with arcuate tooth has been proposed in this paper, and the meshing characteristics are investigated. Based on the concept of imaginary gear cutter, tooth surface equation has been derived, flank modification has also been considered. The transmission errors and bearing contacts of the face gear drive with arcuate tooth under different assembly conditions are investigated by applying the tooth contact analysis. The numerical results reveal that the bearing contacts are not sensitive to the errors of misalignments, and a more favorable type parabolic function of transmission errors with better symmetry and reduced amplitude may be obtained according to the modification of the face gear.


2010 ◽  
Vol 44-47 ◽  
pp. 1948-1951
Author(s):  
Ning Zhao ◽  
Hui Guo

The coordinate systems for cutting face gears and for meshing of face gear drive with involute cylindrical pinion. The tooth surface equation of face gear with machining errors is deviated, such as change of shaft angle, change of shortest distance between face gear and cutter tool axes, helix angle of cutter tool. Tooth contact analysis applied in the paper considered with the alignment error of the driving system. The tooth contact path and the transmission error of the face gear drive were simulated through the tooth contact analysis for different alignment errors and machining errors. The simulation results indicate that all of the alignment errors and machining error don’t cause transmission error except helix angle error of the cutting tool. The errors will bring the shift of the contact path on gear teeth. The shift of bearing contact can be reduced by combination of different errors of alignment or machining.


2011 ◽  
Vol 86 ◽  
pp. 327-332
Author(s):  
Jin Hua Wang ◽  
Yun Bo Shen ◽  
Ze Yong Yin ◽  
Jie Gao ◽  
Yan Ying Jiang

Load sharing is one of the main factors that determine gear strength. In this paper, Tooth Contact Analysis (TCA) and Loaded Tooth Contact Analysis (LTCA) have been performed to investigate the effect of tooth surface modification on the contact ratio, load sharing and strength of an orthogonal offset face gear drive with spur involute pinion. The results indicate that the contact ratio of 2.0 or higher could be achieved. The maximum load carried by single tooth and bending stress are significantly reduced when appropriate tooth surface modification is applied to the orthogonal offset face gear drive.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879825 ◽  
Author(s):  
Xuezhong Fu ◽  
Zongde Fang ◽  
Yanmei Cui ◽  
Xiangying Hou ◽  
Jianhua Li

This article proposes the application of a profile-shifted grinding disc to generate an offset, non-orthogonal and profile-shifted face gear. A detailed investigation of the modelling, tooth geometry and contact characteristics of the offset, non-orthogonal and profile-shifted face gear has been conducted. The mathematical models of the profile-shifted shaper cutter, profile-shifted pinion, profile-shifted grinding disc and offset, non-orthogonal and profile-shifted face gear are established. Considering the topological modification, the tooth surface equation of the offset, non-orthogonal and profile-shifted face gear is deduced. Based on the undercutting and pointing of the tooth surface, the limiting tooth width of the offset, non-orthogonal and profile-shifted face gear is determined, and a mathematical model of tooth contact analysis of the offset, non-orthogonal and profile-shifted face gear drive is established with the alignment errors. Using the approach presented in this article, an example of an offset, non-orthogonal and profile-shifted face gear drive and analytical results are presented.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Xian-long Peng ◽  
Le Zhang ◽  
Zong-de Fang

A manufacturing process for fabricating ease-off surfaces of a face gear drive that is provided with controllable unloaded meshing performance and local bearing contact is proposed. In order to control the unloaded meshing performance, a predesigned transmission error, a predesigned contact path, and the length of contact ellipse are applied in the redesign of the ease-off surfaces of the pinion and face gear. A method of point contact between the grinding disk and the manufactured pinion is proposed to generate the pinion's ease-off surface, the grinding disk is driven by a series of parabolic motions. Numerical examples are used to illustrate the application of the proposed method, the proposed method is proven to be feasible, and the redesigned face gear is proven to be able reproduce the predesigned unloaded meshing performance simulated by tooth contact analysis (TCA). The influence of misalignment on unloaded meshing performance is also analyzed.


1997 ◽  
Vol 119 (1) ◽  
pp. 114-119 ◽  
Author(s):  
Y. Zhang ◽  
Z. Wu

This paper presents a detailed investigation on the manufacturing, tooth geometry and contact characteristics of face gear drives with offset axes. In the paper, the tooth geometry of offset face gears is analytically determined by simulating the conjugate motion between the gear and the cutting tool in the generation process. Design criteria are established for the optimal tooth element proportions of offset face gears that avoid tooth undercutting and pointing. The tooth surface geometry of the gear member of the drive is modified by using a shaper that resembles the pinion in profile but has a few more teeth than the pinion to localize the tooth contact. The contact characteristics of the offset face gears are analyzed by a tooth contact analysis (TCA) program that simulates the meshing process of the gear drive assembled under misalignment. An example of offset face gear design and contact analysis is included in the paper.


2013 ◽  
Vol 365-366 ◽  
pp. 294-298 ◽  
Author(s):  
Shu Yan Zhang ◽  
Hui Guo

The meshing principle of a new kind of parabolic gear is introduced, and the tooth surface equations of parabolic gear are obtained. A tooth contact analysis to simulate meshing and contact is applied. The paper investigates the influence of misalignment on transmission errors and shift of bearing contact. Examples to illustrate the developed approaches are proposed. The research provides the basis for design of new high strength parabolic gears.


Author(s):  
Ignacio Gonzalez-Perez ◽  
Alfonso Fuentes ◽  
Faydor L. Litvin ◽  
Kenichi Hayasaka ◽  
Kenji Yukishima

A new geometry of a cylindrical worm gear drive is proposed for: (i) reduction of sensitivity of the drive to errors of alignment, and (ii) observation of a favorable bearing contact. The basic ideas of new geometry are as follows: (i) the worm-gear is generated by a hob that is oversized in comparison with the worm of the drive and has a parabolic profile in normal section; (ii) the tooth surface of the worm of the drive is a conventional one. Due to deviation of the hob thread surface, the bearing contact of the worm and the worm-gear is localized. Reduction of sensitivity to misalignment and improved conditions of meshing are confirmed by application of TCA (Tooth Contact Analysis). Formation of bearing contact has been investigated by finite element method applied in 3D for more than one pair of contacting teeth. Developed ideas may be applied for various types of cylindrical worm gear drives.


Sign in / Sign up

Export Citation Format

Share Document