The Research of Model-Free Adaptive Control for Large Scale Wind Turbine

2013 ◽  
Vol 433-435 ◽  
pp. 1293-1297
Author(s):  
Xing Jia Yao ◽  
Jiang Sheng Zhu ◽  
Kui Chao Ma ◽  
Qing Ding Guo

Dynamic load is a key consideration in large scale wind turbine design. It is approved that the performance of controller can distinguish impact wind turbine loads. For strong external disturbances and inaccurately modeled of large wind turbines, In this paper, we propose model-free adaptive (Model Free Adapt, MFA) individual pitch control algorithms. The controller was developed in to mitigate the rotor unbalance structural load for variable speed wind turbine. The controller is designed from a nonlinear model of the system which takes into account the blades, shaft and tower flexibilities. Bladed software was used for the control strategy and traditional PID control strategy simulation comparison. The results show that the new control strategy can effectively stabilize wind turbine power output and reduce aerodynamic loads.

2013 ◽  
Vol 136 (2) ◽  
Author(s):  
JuChuan Dai ◽  
Deshun Liu ◽  
Yanping Hu ◽  
Xiangbing Shen

Emphasis of this article is on the dynamic characteristics analysis of individual pitch control for MW scale directly driven wind turbines with permanent magnet synchronous generator (PMSG). The pitch control objectives were analyzed and the objective expressions were deduced, including power expression, loads expression, and vibration expressions of blade and tower. Then, both the collective pitch control aiming at power control and the individual pitch control strategy aiming at joint power and loads control were analyzed, too. The blade root bending moments and the actual capture power of wind rotor were employed to be the control variables. The power was calculated based on the conventional measured parameters of wind turbines. In order to reflect the difference between the pitch angle command value and the actual value, the pitch actuator dynamic model was used. The research results show that both the collective pitch control strategy and the proposed individual pitch control strategy can effectively control the power injected into grid; moreover, the individual pitch control can reduce fatigue loads; while in the process of individual pitch control, the actual variation of blade pitch angle is closely related to not only the inflow speed but also the blade azimuth angle; individual pitch control strategy can reduce the variation amplitude of flapwise moments, but has little influence on the edgewise moments.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 783 ◽  
Author(s):  
Sebastian Perez-Becker ◽  
David Marten ◽  
Christian Navid Nayeri ◽  
Christian Oliver Paschereit

Accurate and reproducible aeroelastic load calculations are indispensable for designing modern multi-MW wind turbines. They are also essential for assessing the load reduction capabilities of advanced wind turbine control strategies. In this paper, we contribute to this topic by introducing the TUB Controller, an advanced open-source wind turbine controller capable of performing full load calculations. It is compatible with the aeroelastic software QBlade, which features a lifting line free vortex wake aerodynamic model. The paper describes in detail the controller and includes a validation study against an established open-source controller from the literature. Both controllers show comparable performance with our chosen metrics. Furthermore, we analyze the advanced load reduction capabilities of the individual pitch control strategy included in the TUB Controller. Turbulent wind simulations with the DTU 10 MW Reference Wind Turbine featuring the individual pitch control strategy show a decrease in the out-of-plane and torsional blade root bending moment fatigue loads of 14% and 9.4% respectively compared to a baseline controller.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Jon Kjellin ◽  
Sandra Eriksson ◽  
Hans Bernhoff

A completely electrical control of a variable speed wind turbine is experimentally verified. A vertical axis wind turbine with a direct driven generator and an electrical system with diode rectification and full inverter connected to the electric grid is presented. This is the first paper that presents this novel 200 kW wind power plant erected at the west coast of Sweden. The turbine has fixed pitch and is only controlled electrically accommodated by passive stall of the blades. By electrically controlling the generator rotational speed with the inverter, passive stall regulation is enabled. The first results on experimental verification of stall regulation in gusty wind speeds are presented. The experiments show that the control system can keep the turbine rotational speed constant even at very gusty winds. It is concluded that electrical control accommodated by passive stall is sufficient as control of the wind turbine even at high wind speeds and can substitute mechanical control such as blade pitch.


2012 ◽  
Vol 463-464 ◽  
pp. 1605-1610
Author(s):  
Li Dong ◽  
Ming Fu Liao ◽  
Ming Qin ◽  
Li Xiang Sun

With the large-scale direction development of wind turbine, the vibrations of wind turbines, which are rigid-flexible coupled multi-body systems, can be easily excited. Control system can be improved to reduce the vibration amplitude and load levels. Fluctuation-suppression pitch control strategy has been improved in this paper. The reference input rotation speed, which is normally constant, is required to change with rotation acceleration in pitch control in this new control strategy. Theory and simulation show that Fluctuation-suppression pitch control (FSPC) strategy can improve the vibration characters of wind turbine and suppress rotation speed and power fluctuation, and it is also quite effective for gust situation


2011 ◽  
Vol 383-390 ◽  
pp. 4341-4345 ◽  
Author(s):  
Xing Jia Yao ◽  
Huan Li

In order to reduce the tilt moment and yaw moment caused by asymmetric wind, aerodynamic model for individual pitch control of large-scale wind turbines was established. Because the aerodynamic model have characteristics of multiple variables, strong coupling and time-varying, First, it was converted into a linear time-invariant and non-coupled model utilizing a coordinate transformation, and so the controller design was simplified. Finally, take wind shearing as a disturbance and designed two independent PID controllers, simulated a 1.5MW wind turbines. The results show that individual pitch control greatly reduced the moment and yaw moment of wind turbine.


Sign in / Sign up

Export Citation Format

Share Document