Theoretical Analysis of Mechanism Kinematics for Boom Crane of Marine Drilling Platform

2013 ◽  
Vol 433-435 ◽  
pp. 53-58
Author(s):  
Jun Qiang Li ◽  
Yong Peng ◽  
Wen Hui Yan

The boom crane of marine drilling platform is an important part of the automated pipe racking system. It has important engineering significance to study the kinematics of boom crane for the automatic control and accurate positioning. Using the method of robot mechanisms, the kinematics of mechanism for boom crane on marine drilling platform is discussed in this paper. According to the structure and motion characteristics of the boom crane, a special joint coordinate system is chosen. The kinematics model of the boom crane is established. The forward kinematics equations, inverse kinematics calculation formulas are derived. The correctness of formulas is verified by examples. The theoretical basis is provided for the movement automatic control and subsequent dynamics and boom crane mechanics analysis when considering the elastic deformation.

2010 ◽  
Vol 43 ◽  
pp. 683-686
Author(s):  
Li Da Zhu ◽  
Jia Ying Pei ◽  
Tian Biao Yu ◽  
Wan Shan Wang

In order to analyze the motion characteristics of turn-milling center, it’s prototype is modeled and spiral motion is simulated and analyzed to get curves of displacement and velocity in forward kinematics and inverse kinematics. The rationality and applicability of mechanism design is verificated to provide the basis of fast optimized design of turn-milling center. So the method can forecast and improve before physical prototype manufacturing to ensure design feasibility and save development time.


2020 ◽  
Author(s):  
Ke Wang ◽  
Ju Li ◽  
Huiping Shen ◽  
Jingjing You ◽  
Ting-Li Yang

Abstract A new type of 3-dof parallel mechanism(PM) with analytical position forward solution is proposed. The reverse dynamic equation of the PM is solved. Different from the traditional dynamic analysis using inverse kinematics, the displacement, velocity and acceleration equations of the PM are established and solved by forward kinematics.The inverse dynamic equation of the PM is constructed and solved by analyzing the forces on each link and based on Newton-Euler method.Through MATLAB and ADAMS , the inverse dynamics is verified by an example. The maximum driving force error of each actuated pair is 1.32%, 5.8% and 5.2% respectively.This paper provides a theoretical basis for the design, manufacture and application of the PM.


Author(s):  
Andrew P. Sabelhaus ◽  
Hao Ji ◽  
Patrick Hylton ◽  
Yakshu Madaan ◽  
ChanWoo Yang ◽  
...  

The Underactuated Lightweight Tensegrity Robotic Assistive Spine (ULTRA Spine) project is an ongoing effort to create a compliant, cable-driven, 3-degree-of-freedom, underactuated tensegrity core for quadruped robots. This work presents simulations and preliminary mechanism designs of that robot. Design goals and the iterative design process for an ULTRA Spine prototype are discussed. Inverse kinematics simulations are used to develop engineering characteristics for the robot, and forward kinematics simulations are used to verify these parameters. Then, multiple novel mechanism designs are presented that address challenges for this structure, in the context of design for prototyping and assembly. These include the spine robot’s multiple-gear-ratio actuators, spine link structure, spine link assembly locks, and the multiple-spring cable compliance system.


2021 ◽  
Vol 22 (8) ◽  
pp. 420-424
Author(s):  
D. Yu. Kolpashchikov ◽  
O. M. Gerget

Continuum robots are a unique type of robots that move due to the elastic deformation of their own body. Their flexible design allows them to bend at any point along their body, thus making them usable in workspaces with complex geometry and many obstacles. Continuum robots are used in industry for non-destructive testing and in medicine for minimally invasive procedures and examinations. The kinematics of continuum robots consisting of a single bending section are well known, as is the forward kinematics for multi-section continuum robots. There exist efficient algorithms for them. However, the problem of inverse kinematics for multi-section continuum robots is still relevant. The complexity of the inverse kinematics for multi-section continuum robots is quite high due to the nonlinearities of the robots’ motion. The article discusses in detail the modification of the FABRIK algorithm proposed by the authors, as well as a Jacobian-based iterative algorithm. A comparison of inverse kinematics algorithms for multi-section continuum robots with constant section length is given and the results of the experiment are described.


2021 ◽  
Vol 336 ◽  
pp. 02014
Author(s):  
Ying Xiong ◽  
Xuehua Tang ◽  
Congcong Shi ◽  
Yang Yang

For now, many hospitals that require nurses to move patients by hand from stretchers to a hospital bed, so a design of stretcher with auxiliary functions of lateral positioning and transferring for immobilized patients, which is a mechanical mechanism consisted of rigid rods, joints and sliders, was designed to help the nurses to move patients between beds and reduce their workload. Driven by motors, the rigid rods can be rotated, stretched or shortened so that the entire stretcher bed board can archive to a proper posture and position. In this paper, the following objectives will be achieved: (i) Create a schematic of the mechanism and describe the principles and functions (ii) the calculation of inverse kinematics, forward kinematics, dynamics (including energy), and PD control in the mechanism (iii) The motion process of simulating the mechanism using MATLAB (iv) Using MATLAB to create the plots of angle, torque, and position state (v) Using SolidWorks to construct the prototype and to implement the motion simulation of the mechanism (vi) Describe the practical application and future Extensions of this mechanism.


2013 ◽  
Vol 341-342 ◽  
pp. 438-442
Author(s):  
Zhou Zheng ◽  
Bi Zhong Xia ◽  
Yi Ran Liu ◽  
Zhong Dong Ouyang

Turnover mechanism is one of the important parts of the element bar conveying subsystem in the aluminum electrolytic capacitor assembling machine (AECAM). This paper analyzed the structure and motion characteristics of the turnover mechanism, and used the ADAMS software to do its parametric modeling, dynamic analysis and optimization design. Finally the paper concluded that Final result of turnover mechanism optimization was that the maximum of resultant force in the cam rotary center decreased by 49.3%.Application of ADAMS software will provide a new way for design and improvement of the assembling machine in future.


2020 ◽  
pp. 027836492093194
Author(s):  
Neil T Dantam

Modern approaches for robot kinematics employ the product of exponentials formulation, represented using homogeneous transformation matrices. Quaternions over dual numbers are an established alternative representation; however, their use presents certain challenges: the dual quaternion exponential and logarithm contain a zero-angle singularity, and many common operations are less efficient using dual quaternions than with matrices. We present a new derivation of the dual quaternion exponential and logarithm that removes the singularity, we show an implicit representation of dual quaternions offers analytical and empirical efficiency advantages compared with both matrices and explicit dual quaternions, and we derive efficient dual quaternion forms of differential and inverse position kinematics. Analytically, implicit dual quaternions are more compact and require fewer arithmetic instructions for common operations, including chaining and exponentials. Empirically, we demonstrate a 30–40% speedup on forward kinematics and a 300–500% speedup on inverse position kinematics. This work relates dual quaternions with modern exponential coordinates and demonstrates that dual quaternions are a robust and efficient representation for robot kinematics.


2012 ◽  
Vol 591-593 ◽  
pp. 2081-2086 ◽  
Author(s):  
Rui Ren ◽  
Chang Chun Ye ◽  
Guo Bin Fan

A particular subset of 6-DOF parallel mechanisms is known as Stewart platforms (or hexapod). Stewart platform characteristic analyzed in this paper is the effect of small errors within its elements (strut lengths, joint placement) which can be caused by manufacturing tolerances or setting up errors or other even unknown sources to end effector. The biggest kinematics problem is parallel robotics which is the forward kinematics. On the basis of forward kinematic of 6-DOF platform, the algorithm model was built by Newton iteration, several computer programs were written in the MATLAB and Visual C++ programming language. The model is effective and real-time approved by forwards kinematics, inverse kinematics iteration and practical experiment. Analyzing the resource of error, get some related spectra map, top plat position and posture error corresponding every error resource respectively. By researching and comparing the error spectra map, some general results is concluded.


2013 ◽  
Vol 345 ◽  
pp. 233-237
Author(s):  
Ben Liang Yu ◽  
Jun Fei Wu ◽  
Ying Yu

This paper first studied the feasibility in application and advantages of the the full metal single screw pump by the method of theoretical research . Then the paper deducted the motion characteristics of the rotor around the stator and flow rate of the metal single screw pump .It is pointed that the center of the rotor profile is always located in the long shaft of the section of stator in any section .As the rotor rotates, the center of the rotor profile on this section takes straight reciprocating motion along the long axis of stator section .The results indicate that it exists feasibility in the designing and processing of full metal single screw pump. Thereby it provides theoretical basis for the application of full metal screw pump.


Author(s):  
Deanne C. Kemeny ◽  
Raymond J. Cipra

Discretely-actuated manipulators are defined in this paper as serial planar chains of many links and are an alternative to traditional robotic manipulators, where continuously variable actuators are replaced with discrete, or digital actuators. Benefits include reduced weight and complexity, and predictable manipulation at lower cost. Challenges to using digital manipulators are the discrete end-effector positions which make the inverse kinematics problem difficult to solve. Furthermore, for a specific application position in the manipulator workspace, there may not be an actual end-effector position. This research has relaxed the inverse kinematics problem around this challenge making each application position an element of a grid in which the end effector must reach. There may be many possible end-effector positions that would reach the element goal, the solution uses the first one that is found. The inverse kinematics solution assumes the assembly configuration of the digital manipulator is already solved specifically for the application grid. The Jacobian function, normally used to solve joint velocities, can be used to identify the exact shift vectors that are used for the inverse kinematics. Three methods to solve this problem are discussed and the third method was implemented as a four-part solution that is a directed and manipulated search for the inverse kinematics solution where all four solutions may be needed. A discussion of forward kinematics and the Jacobian function in relation to digital manipulators is also presented.


Sign in / Sign up

Export Citation Format

Share Document