Experimental Investigation of Homogeneous Charge Compression Ignition Engine of Ethanol and Diesel Blends

2013 ◽  
Vol 440 ◽  
pp. 254-259 ◽  
Author(s):  
S. Natarajan ◽  
N.V. Mahalakshmi ◽  
S. Sundarraj

This paper deals with the experimental investigation of a Homogeneous Charge Compression Ignition (HCCI) Engine system. The main objective of this research work is to study the effects of a premixed fuel ratio on the performance, combustion characteristics and reduction of oxides of nitrogen and smoke intensity, using the HCCI concept. The engine used for the experiments was of a Kirloskar TAF-I series. The engine is a four stroke, single cylinder air cooled diesel engine, of a rated power of 4.4 kW loaded with an electrical dynamometer. An electronic fuel injection circuit was developed to control the ignition timing and duration of the premixed charge. Ethanol was premixed, and a part injected before ignition, whereas the diesel fuel was injected by the conventional injector directly into the cylinder. The part injected ethanol and direct injected diesel were tested in various proportions, to optimize the operating range, and the same setup was tested with various % of EGR.The obtained results include data plots illustrating the performance, combustion and emission characteristics. The results indicate that the concentration of the oxides of nitrogen species rapidly decreased, and the smoke emissions were reduced simultaneously at 20% Rp and 20% EGR in 75% load and full load conditions.

2008 ◽  
Vol 9 (5) ◽  
pp. 361-397 ◽  
Author(s):  
M Shahbakhti ◽  
C R Koch

The cyclic variations of homogeneous charge compression ignition (HCCI) ignition timing is studied for a range of charge properties by varying the equivalence ratio, intake temperature, intake pressure, exhaust gas recirculation (EGR) rate, engine speed, and coolant temperature. Characterization of cyclic variations of ignition timing in HCCI at over 430 operating points on two single-cylinder engines for five different blends of primary reference fuel (PRF), (iso-octane and n-heptane) is performed. Three distinct patterns of cyclic variation for the start of combustion (SOC), combustion peak pressure ( Pmax), and indicated mean effective pressure (i.m.e.p.) are observed. These patterns are normal cyclic variations, periodic cyclic variations, and cyclic variations with weak/misfired ignitions. Results also show that the position of SOC plays an important role in cyclic variations of HCCI combustion with less variation observed when SOC occurs immediately after top dead centre (TDC). Higher levels of cyclic variations are observed in the main (second) stage of HCCI combustion compared with that of the first stage for the PRF fuels studied. The sensitivity of SOC to different charge properties varies. Cyclic variation of SOC increases with an increase in the EGR rate, but it decreases with an increase in equivalence ratio, intake temperature, and coolant temperature.


2021 ◽  
pp. 1-29
Author(s):  
Ratnak Sok ◽  
Kei Yoshimura ◽  
Kenjiro Nakama ◽  
Jin Kusaka

Abstract The oxygen-depleted environment in the recompression stroke can convert gasoline fuel into light hydrocarbons due to thermal cracking, partial oxidation, and water-gas shift reactions. These reformate species can influence the combustion characteristics of gasoline direct injection homogeneous charge compression ignition (GDI-HCCI) engines. In this work, the combustion phenomena are investigated using a single-cylinder research engine under a medium load. The main combustion phases are experimentally advanced by direct fuel injection into the negative valve overlap (NVO) compared with that of intake stroke under single/double pulse injections. NVO peak in-cylinder pressures are lower than that of motoring due to the limited O2 concentration, emphasizing that endothermic reactions occur during the overlap. This phenomenon limits the oxidation reactions, and the thermal effect is not pronounced. The 0-D chemical kinetics results present the same increasing tendencies of classical reformed species of rich-mixture such as C3H6, C2H4, CH4, CO, and H2 as functions of injection timings. Predicted ignition delays are shortened due to the additions of these reformed species. The influences of the reformates on the main combustion are confirmed by 3-D CFD calculations, and the results show that OH radicals are advanced under NVO injections relative to intake stroke injections. Consequently, earlier heat release and cylinder pressure are noticeable. Parametric studies on the effects of injection pressure, double-pulse injection, and equivalence ratio on the combustion and emissions are also discussed experimentally.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012016
Author(s):  
Binzhi Sun ◽  
Hexu Wang ◽  
Keming Yan ◽  
Renyi Zhang

Abstract HCCI represents homogeneous charge compression ignition. It is a cleaner, higher thermal efficiency, and higher fuel efficiency alternative combustion technology. This engine combines the advantages of diesel and gasoline engines so that the compression ratio of diesel engines can be achieved even when gasoline is used as fuel, and there is basically no NOx and soot emissions. However, the HCCI still has some problems such as ignition timing unstable, bad load and speed variation, and cold start capacity. Today, due to the above shortcomings, HCCI is still mainly researched and developed in the laboratory without mass production. The purpose of this paper is discussing the advantage and disadvantage of HCCI technique and analyse the operating principle to provide possible solution that will improve the quality of HCCI engine before the mass production of HCCI.


Sign in / Sign up

Export Citation Format

Share Document