Engineering Extrapolation to Flight Reynolds Number for Supercritical Airfoil Pressure Distribution Based on CFD Results

2013 ◽  
Vol 444-445 ◽  
pp. 517-523
Author(s):  
Da Wei Liu ◽  
Xin Xu ◽  
Zhi Wei ◽  
De Hua Chen

Pressure distribution of supercritical airfoil at flight Reynolds number could not be fully simulated except in cryogenic wind tunnel such as NTF (National Transonic Facility) and ETW (European Transonic Wind tunnel), which is costly and time resuming. This paper aimed to explore an engineering extrapolation to flight Reynolds number from low Reynolds number wind tunnel data for supercritical airfoil pressure distribution. However, the extrapolation method requiring plenty of data was investigated based on the CFD results for the reason of low cost and short period. Flows over a typical supercritical airfoil were numerically simulated by solving the two dimensional Navier-Stokes equations, with applications of ROE scheme spatial discretization and LU-SGS time march. Influence of computational grids convergence and turbulent models were investigated during the process of simulation. The supercritical airfoil pressure distribution were obtained with Reynolds numbers varied from 3.0×106to 30×106per airfoil chord, angles of attack from 0 degree to 6 degree and Mach numbers from 0.74 to 0.8. Simulated results indicated that weak shock existed on the upper surface of supercritical airfoil at cruise condition, that the shock location, shock strength and trailing edge pressure were dependent of Reynolds number, attack angles and Mach numbers. A similar parameter describing the Reynolds number effects factors was obtained by analyzing the relationship of shock wave location, shock front pressure and trailing edge pressure. Based on the similar parameter, airfoil pressure distribution at Reynolds number 30×106was obtained by extrapolation. It was shown that extrapolated result compared well with simulated result at Reynolds number 30×106, implying that the engineering method was at least promising applying to the extrapolation of low Reynolds number wind tunnel data.

Author(s):  
D. J. Patterson ◽  
M. Hoeger

Because of the laminar boundary-layer’s inability to withstand moderate adverse pressure gradients without separating, profile losses in LP turbines operating at low Reynolds numbers can be high. The choice of design pressure distribution for the blading is thus of great importance. Three sub-sonic LP turbine nozzle-guide-vane cascade profiles have been tested over a wide range of incidence, Mach number and Reynolds number. The three profiles are of low, medium and high deflection and, as such, display significantly different pressure distributions. The tests include detailed boundary-layer traverses, trailing-edge base-pressure monitoring and oil-flow visualisation. It is shown that the loss variation with Reynolds number is a function of pressure distribution and that the trailing-edge loss component is dominant at low Reynolds number. The importance of achieving late flow transition — rather than separation — in the suction-surface trailing-edge region is stressed. The paper concludes by remarking on the advantages and practical implications of each loading design.


2021 ◽  
Author(s):  
Bastav Borah ◽  
Anand Verma ◽  
Vinayak Kulkarni ◽  
Ujjwal K. Saha

Abstract Vortex shedding phenomenon leads to a number of different features such as flow induced vibrations, fluid mixing, heat transfer and noise generation. With respect to aerodynamic application, the intensity of vortex shedding and the size of vortices play an essential role in the generation of lift and drag forces on an airfoil. The flat plates are known to have a better lift-to-drag ratio than conventional airfoils at low Reynolds number (Re). A better understanding of the shedding behavior will help aerodynamicists to implement flat plates at low Re specific applications such as fixed-wing micro air vehicle (MAV). In the present study, the shedding of vortices in the wake of a flat plate at low incidence has been studied experimentally in a low-speed subsonic wind tunnel at a Re of 5 × 104. The velocity field in the wake of the plate is measured using a hot wire anemometer. These measurements are taken at specific points in the wake across the flow direction and above the suction side of the flat plate. The velocity field is found to oscillate with one dominant frequency of fluctuation. The Strouhal number (St), calculated from this frequency, is computed for different angles of attack (AoA). The shedding frequency of vortices from the trailing edge of the flat plate has a general tendency to increase with AoA. In this paper, the generation and subsequent shedding of leading edge and trailing edge vortices in the wake of a flat plate are discussed.


2020 ◽  
Vol 2 (5) ◽  
Author(s):  
K. P. Neriya Hegade ◽  
R. Natalia ◽  
B. Wehba ◽  
A. Mittal ◽  
R. B. Bhat ◽  
...  

2014 ◽  
Vol 695 ◽  
pp. 651-654 ◽  
Author(s):  
Magedi Moh M. Saad ◽  
Norzelawati Asmuin

This paper is primarily concentrated with determining aerodynamic characteristics and choosing the best angle of attack at a maximum lift and low drag for the FX 63-137 aerofoil at a low Reynolds number and a speed of 20m/s and 30m/s, by using subsonic wind tunnel through manufacturing the aerofoil by aluminum alloy using a CNC machine. The proposed methodology is divided into several stages. Firstly, manufacturing the aerofoil using an aluminum alloy. Secondly, the testing process is carried out using subsonic wind tunnel. Thirdly, the results are displayed and compared with results produced from related works, in order to find out the best angle of attack at a maximum lift.


Sign in / Sign up

Export Citation Format

Share Document