Characteristics of Crude Palm Oil Produced in Hainan

2013 ◽  
Vol 448-453 ◽  
pp. 1079-1084 ◽  
Author(s):  
Pu Gong ◽  
Gan Ran Deng ◽  
Jian Hua Cao ◽  
Guo Jie Li ◽  
Zhi Liu ◽  
...  

Crude palm oil (CPO) was extracted from fresh fruit bunches of RYL7 oil palm cultivated in Hainan by using a self-made single stage screw press. The physicochemical characteristics and Fatty acid composition of the CPO was investigated. The experimental results included melting point (33.10 °C), density (0.91 g/cm3 at 20 °C), acid value (8.35 mg KOH/g), iodine value (62.72 mg iodine/g), saponifiable value (198.02 mg KOH/g), moisture and volatile matter (0.16% of total lipids), insoluble impurities (0.04% of total lipids), unsaponifiable matter (0.40% of total lipids). Oleic acid (40.90% of total fatty acids), palmitic acid (37.88% of total fatty acids), linoleic (14.29% of total fatty acids), followed by stearic acid (5.11% of total fatty acids) were found to be the predominant fatty acids in the oil. The unsaturated oleic acid was the most predominant fatty acid in CPO of Hainan while saturated palmitic acid was the most principal fatty acid in palm oil from Malaysia. The contents of linolenic, unsaturated fatty acids, and polyunsaturated fatty acids in this CPO were 4.09%, 5.09%, 4.09% higher than that of Malaysia, respectively. In addition, the percentages of palmitic acid and saturated fatty acids of this oil were 5.62%, 6.01% lower than that of Malaysia, respectively.

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Rismawati Rasyid ◽  
Ummu Kalsum ◽  
Rahmaniah Malik ◽  
Dadi Priyono ◽  
Azis Albar

Abstrak Asam lemak jenuh maupun tak jenuh pada minyak nabati memiliki potensi untuk diubah menjadi bahan kimia penyusun bahan bakar . Komponen asam lemak pada CPO RBD dengan komposisi terbesar adalah asam palmitat (38.2%) dan asam oleat (45.89%).  Pembuatan biodiesel dalam penelitian ini menggunakan CPO (Crude Palm Oil) yang telah dimurnikan melalui reaksi transesterfikasi dengan pereaksi etanol dan katalisator KOH. Penambahan urea sebagai zat aditif pada reaksi dapat meningkatkan kualitas biodiesel yang diperoleh serta lebih efisien dalam tahapan pemurnian. Persentase kadar FAME (Fatty Acid Metyl Ester) setara dengan persen yield biodiesel pada proses reaksi tanpa penambahan urea adalah 90.34% dan mengalami peningkatan setelah penambahan urea sebesar 98%. Densitas yang dihasilkan pada reaksi tanpa zat aditif  0.868 gr/ ml dan reaksi dengan penambahan zat aditif memiliki densitas  0.866 gr/ml,  kedua produk tersebut telah sesuai dengan standar SNI yakni berkisar 0.85–0.89. Kata kunci : biodiesel, CPO, zat aditif Abstract Saturated and unsaturated fatty acids in vegetable oils have potential to be converted into constituent of chemicals fuel. Fatty acids in the RBD palm oil with the largest composition are palmitic acid (38.2%) and oleic acid (45.89%). Production of fuel which substitute diesel fuel (biodiesel) from CPO (Crude Palm Oil) which has been purified by transesterification reaction with ethanol reagent and KOH catalyst. The addition of urea as an additive substancein the reaction to improve  the quality as well as more efficient biodiesel obtained in the purification stages. Percentage value of FAME(Fatty Acid Metyl Ester)or yield biodiesel in the reaction without the addition of urea is 90.34% and after the addition of urea increased by 98%. Density of product that produced in the reaction without additives is 0.868 g / ml and for reaction with additives has a density of 0.866 g / ml, both of these products are met the criteria of SNI  standards which ranged from 0.85 to 0.89. Keywords : Biodiesel, CPO, additive substance


2020 ◽  
Vol 11 (2) ◽  
pp. 8904-8914

The objective of this study to compare the fatty acids composition in cooking oil from repeated frying without added turmeric extract and added. The research design is testing the composition of fatty acids in repeated cooking oil using two types of treatment, namely cooking oil from frying without adding turmeric extract and cooking oil from frying with 0.03% turmeric extract added with 10 times frying repeat because it is suspected that repeated frying will increase the composition of fatty acids in cooking oil. The analysis of fatty acids was conducted using gas chromatography. Based on these results that the fatty acid components were produced of saturated fatty acids, namely lauric acid, myristic acid, palmitic acid, and stearic acid, whereas unsaturated fatty acids also detected such as elaidic acid, oleic acid, linoleic acid, cis-11-eicosadienoic acid, linolenic acid, and cis-11,14-eicosadienoic acid. The highest saturated fatty acid content in cooking oil before frying is palmitic acid (30.88%), whereas unsaturated fatty acid was oleic acid (35.86%). The highest content of saturated fatty acids in cooking oil has been added turmeric extract before frying is palmitic acid (28.5%), while unsaturated fatty acid of oleic acid was 32.97%.


2013 ◽  
Vol 13 (2) ◽  
pp. 142-148
Author(s):  
Nafly C. Tiven ◽  
Lies Mira Yusiati ◽  
Rusman Rusman ◽  
Umar Santoso

This research aimed to determine the effect of crude palm oil protected with formaldehyde on the hydrogenation of unsaturated fatty acids in the rumen and its effect on blood and meat fatty acids. Fifteenth local male lambs aged 9-12 months weighing 14-17 kg, were divided into 3 groups ration treatment. The first group received only the basal ration (R0), the 2nd group received the basal ration and 3% CPO (R1), while the 3rd group received the basal ration and 3% CPO protected with 2% formaldehyde (R2). Basal feed consisted of 60% grass, 30% bran and 10% soybean meal, with the nutrient content of 62.98% TDN, 45.5% DM, 14.48% CP, 4.70% EE and 21.93% CF. Parameters observed were the fatty acid from rumen fluid, blood and meat of sheep. Data were analyzed by complete randomized design direction patterns. Differences between treatments were tested further using Duncan's New Multiple Range Test. The results showed that treatment of R2 can increase unsaturated fatty acids in the rumen, blood and meat (P


2015 ◽  
Vol 36 (3) ◽  
pp. 852-865 ◽  
Author(s):  
Wiebke Gehrmann ◽  
Wiebke Würdemann ◽  
Thomas Plötz ◽  
Anne Jörns ◽  
Sigurd Lenzen ◽  
...  

Background/Aims: Elevated levels of non-esterified fatty acids (NEFAs) are under suspicion to mediate β-cell dysfunction and β-cell loss in type 2 diabetes, a phenomenon known as lipotoxicity. Whereas saturated fatty acids show a strong cytotoxic effect upon insulin-producing cells, unsaturated fatty acids are not toxic and can even prevent toxicity. Experimental evidence suggests that oxidative stress mediates lipotoxicity and there is evidence that the subcellular site of ROS formation is the peroxisome. However, the interaction between unsaturated and saturated NEFAs in this process is unclear. Methods: Toxicity of rat insulin-producing cells after NEFA incubation was measured by MTT and caspase assays. NEFA induced H2O2 formation was quantified by organelle specific expression of the H2O2 specific fluorescence sensor protein HyPer. Results: The saturated NEFA palmitic acid had a significant toxic effect on the viability of rat insulin-producing cells. Unsaturated NEFAs with carbon chain lengths >14 showed, irrespective of the number of double bonds, a pronounced protection against palmitic acid induced toxicity. Palmitic acid induced H2O2 formation in the peroxisomes of insulin-producing cells. Oleic acid incubation led to lipid droplet formation, but in contrast to palmitic acid induced neither an ER stress response nor peroxisomal H2O2 generation. Furthermore, oleic acid prevented palmitic acid induced H2O2 production in the peroxisomes. Conclusion: Thus unsaturated NEFAs prevent deleterious hydrogen peroxide generation during peroxisomal β-oxidation of long-chain saturated NEFAs in rat insulin-producing cells.


2012 ◽  
Vol 554-556 ◽  
pp. 905-908 ◽  
Author(s):  
Su Xi Wu ◽  
Rui Xin Liu ◽  
Hui Li

In order to confirm the substitutability of palm oil for lard, the fatty acid composition and their distribution at the Sn-2 position of triglycerides in three kinds of palm oil products and five kinds of lard products were investigated. The results obtained were as follows. Palm oil has similar saturated fatty acids composition (C16:0, C18:0, C18:1, C18:2) with lard, and has slightly lower unsaturated fatty acids content than lard. The Sn-2 position of palm oil is mainly distributed with unsaturated fatty acids (C18:1, C18:2), while the Sn-2 position of lard is mainly distributed with saturated fatty acids (C16:0, C18:0), which is maybe the cause why palm oil is easier to be digested and absorbed than lard.


1996 ◽  
Vol 316 (3) ◽  
pp. 847-852 ◽  
Author(s):  
Jennifer S. BRUCE ◽  
Andrew M. SALTER

Unlike other saturated fatty acids, dietary stearic acid does not appear to raise plasma cholesterol. The reason for this remains to be established, although it appears that it must be related to inherent differences in the metabolism of the fatty acid. In the present study, we have looked at the metabolism of palmitic acid and stearic acid, in comparison with oleic acid, by cultured hamster hepatocytes. Stearic acid was taken up more slowly and was poorly incorporated into both cellular and secreted triacylglycerol. Despite this, stearic acid stimulated the synthesis and secretion of triacylglycerol to the same extent as the other fatty acids. Incorporation into cellular phospholipid was lower for oleic acid than for palmitic acid and stearic acid. Desaturation of stearic acid, to monounsaturated fatty acid, was found to be greater than that of palmitic acid. Oleic acid produced from stearic acid was incorporated into both triacylglycerol and phospholipid, representing 13% and 6% respectively of the total after a 4 h incubation. Significant proportions of all of the fatty acids were oxidized, primarily to form ketone bodies, but by 8 h more oleic acid had been oxidized compared with palmitic acid and stearic acid.


2010 ◽  
pp. 89-92
Author(s):  
Melinda-Rita Márton ◽  
Sándor Szép ◽  
Zsolt Mándoki ◽  
Melinda Tamás ◽  
Salamon Rozália Veronika ◽  
...  

During our research we studied the fat content and fatty acid composition during the germination and sprouting periods of the most important sprouts: wheat, lentil, alfalfa, radish and sunflower seed. In this article we present our research results during this sprouting study. The concentration of the saturated fatty acids (palmitic acid, stearic acid) decreased, the concentration of the unsaturated fatty acids increased during germination, but the tendency was not so high than was published in the literature.


2014 ◽  
Vol 139 (4) ◽  
pp. 433-441 ◽  
Author(s):  
Geoffrey Meru ◽  
Cecilia McGregor

Seed oil percentage (SOP) and fatty acid composition of watermelon (Citrullus lanatus) seeds are important traits in Africa, the Middle East, and Asia where the seeds provide a significant source of nutrition and income. Oil yield from watermelon seed exceeds 50% (w/w) and is high in unsaturated fatty acids, a profile comparable to that of sunflower (Helianthus annuus) and soybean (Glycine max) oil. As a result of novel non-food uses of plant-derived oils, there is an increasing need for more sources of vegetable oil. To improve the nutritive value of watermelon seed and position watermelon as a potential oil crop, it is critical to understand the genetic factors associated with SOP and fatty acid composition. Although the fatty acid composition of watermelon seed is well documented, the underlying genetic basis has not yet been studied. Therefore, the current study aimed to elucidate the quality of watermelon seed oil and identify genomic regions and candidate genes associated with fatty acid composition. Seed from an F2 population developed from a cross between an egusi type (PI 560023), known for its high SOP, and Strain II (PI 279261) was phenotyped for palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2). Significant (P < 0.05) correlations were found between palmitic and oleic acid (0.24), palmitic and linoleic acid (–0.37), stearic and linoleic acid (–0.21), and oleic and linoleic acid (–0.92). A total of eight quantitative trait loci (QTL) were associated with fatty acid composition with a QTL for oleic and linoleic acid colocalizing on chromosome (Chr) 6. Eighty genes involved in fatty biosynthesis including those modulating the ratio of saturated and unsaturated fatty acids were identified from the functionally annotated genes on the watermelon draft genome. Several fatty acid biosynthesis genes were found within and in close proximity to the QTL identified in this study. A gene (Cla013264) homolog to fatty acid elongase (FAE) was found within the 1.5-likelihood-odds (LOD) interval of the QTL for palmitic acid (R2 = 7.6%) on Chr 2, whereas Cla008157, a homolog to omega-3-fatty acid desaturase and Cla008263, a homolog to FAE, were identified within the 1.5-LOD interval of the QTL for palmitic acid (R2 = 24.7%) on Chr 3. In addition, the QTL for palmitic acid on Chr 3 was located ≈0.60 Mbp from Cla002633, a gene homolog to fatty acyl- [acyl carrier protein (ACP)] thioesterase B. A gene (Cla009335) homolog to ACP was found within the flanking markers of the QTL for oleic acid (R2 = 17.9%) and linoleic acid (R2 = 21.5%) on Chr 6, whereas Cla010780, a gene homolog to acyl-ACP desaturase was located within the QTL for stearic acid (R2 = 10.2%) on Chr 7. On Chr 8, another gene (Cla013862) homolog to acyl-ACP desaturase was found within the 1.5-LOD interval of the QTL for oleic acid (R2 = 13.5%). The genes identified in this study are possible candidates for the development of functional markers for application in marker-assisted selection for fatty acid composition in watermelon seed. To the best of our knowledge, this is the first study that aimed to elucidate genetic control of the fatty acid composition of watermelon seed.


2021 ◽  
Vol 14 (2) ◽  
Author(s):  
Murad Bahadi ◽  
Nadia Salih ◽  
Jumat Salimon

Oleic acid (OA) rich vegetable oils is important for the daily essential dietary oils intake but restrict to particular oil such as olive oil. However OA enrichment to other vegetable oil such as palm oil is always possible. OA can be obtained from cheap resources such as high free fatty acid crude palm oil (HFFA-CPO). OA concentrate from HFFA-CPO fatty acids mixture requires efficient and low cost technique. Urea complex crystallization fractionation is a classic method for fractionating saturated and monounsaturated fatty acids from polyunsaturated fatty acids of many vegetable oils. In this work, the separation and purification of oleic acid (OA) from unsaturated fatty acids mixture fraction (USFA) of HFFA-CPO fatty acids mixture by urea complex fractionation (UCF) was studied. The crystallization reaction conditions of urea inclusion for the non-urea complex fraction (NUCF) were optimized using the response surface methodology (RSM) and the optimal model was developed. The results showed high content of OA (88%) in urea complex fraction (UCF) with 86% yield at optimal conditions of urea-to-USFAs ratio of 4.62 : 1 (w/w), crystallization temperature at –10°C and crystallization time of 24 h. The results have demonstrated that urea complex crystallization fractionation method is a very effective with low cost, stable, obtainable, and comparatively ease to recover of OA from polyunsaturated fatty acids (PUFA) of an oil fatty acids mixture. Pure OA is plausible to be used back for the OA enrichment modification into palm oil for new dietary oil.


Author(s):  
Devi R. C. Bhanu ◽  
K. K. Sabu

Objective: Wild indigenous fruits are believed to be extremely nutritious, contributing a great deal to the general health of the tribal and rural population. To validate this claim, systematic studies are required to estimate their nutritional composition. The objective of the study was to analyze the fatty acid composition of Syzygium zeylanicum (L.) DC. var. zeylanicum.Methods: The fatty acid composition of S. zeylanicum var. zeylanicum fruits were analysed by GC-MS/MS.Results: The major fatty acids were cis-oleic acid (43.47±0.62 %) and linoleic acid (31.14±0.35%). Total monounsaturated fatty acids in the sample was 44.21%. Omega-6, omega-7 and omega-9 fatty acids were detected. The polyunsaturated fatty acids in thefruits were linoleic acid (31.14±0.35 %) and arachidonic acid (0.15±0.22 %), whereas 24.51 % of the total fatty acids were saturated. The ratio of unsaturated to saturated fatty acids was approximately 3:1. The order of abundance of fatty acids, in some of the healthiest oils, viz. olive, canola, peanut oils is, Oleic acid>Linoleic acid>Palmitic acid>Stearic acid and the same order was observed in the present study.Conclusion: Fruits of S. zeylanicum var. zeylanicum too shows a healthy balance between unsaturated and saturated fats. 


Sign in / Sign up

Export Citation Format

Share Document