Heat Transfer Analysis of the Operation in Delayed Coking Coke Drum

2013 ◽  
Vol 448-453 ◽  
pp. 3277-3280
Author(s):  
Cheng Qing Lu ◽  
Nai Ming Wu ◽  
Kai Quan Yang

Delayed coking coke drum is the core equipment of delayed coking technology, which experiences almost all the thermal and mechanical loadings during operation. In this study, two coke drum finite element models have been created with four material models and the thermal boundary conditions are determined based on the temperature measurement data. Finite element analysis methods known as function loading and multiple steps analysis are used through the simulation. Temperature distributions and temperature variation curves of different nodes are then obtained by finite element heat transfer analysis. Numerical results show that temperature distribution is complex in the transition section and the water cooling stage has the highest temperature change rate.

2007 ◽  
Vol 129 (2) ◽  
pp. 316-322
Author(s):  
Dennis K. Williams ◽  
Trevor G. Seipp

This paper describes the considerations employed in the finite element analysis of a relatively “short” support skirt on a hydrocarbon reactor vessel. The analysis is accomplished in accordance with ASME B&PV Code, Section VIII, Division 2 alternate rules in conjunction with the guidelines outlined in WRC Bulletin 429. This provides a sound basis for the classification of the calculated stress intensities. The support skirt is capable of sustaining the deadweight load in addition to resisting the effects of thermal displacements, wind loadings, overturning moments from external piping loads on the attached hydrocarbon reactor vessel, and friction between the skirt base plate and concrete foundation. The displacement and thermal boundary conditions are well defined and discussed in detail. The effects of multiple scenarios for the displacement boundary conditions are examined. The skirt design also employs a hot-box arrangement whereby the primary mode of heat transfer is by radiation. A discussion of the two-part analysis is included and details the interaction between the heat transfer analysis and the subsequent structural analysis. The heat transfer finite element analysis is utilized to determine the temperatures throughout the bottom of the vessel shell and head, as well as the integrally attached support skirt. Of prime importance during the analysis is the axial thermal gradient present in the skirt from the base plate up to and slightly beyond the skirt-to-shell junction. While the geometry of the subject vessel and skirt is best described as axisymmetric, the imposed loadings are a mixture of axisymmetric and non-axisymmetric. This combination lends itself to the judicious selection and utilization of the harmonic finite element and properly chosen Fourier series representation of the applied loads. Comparison of the thermally induced axial stress gradient results from the FEA to those obtained by the closed form beam-on-elastic-foundation are also tendered and discussed. Finally, recommendations are included for the design and analysis of critical support skirts for large, heavy-wall vessels.


Author(s):  
Dennis K. Williams ◽  
Trevor G. Seipp

This paper describes the considerations employed in the finite element analysis of a relatively “short” support skirt on a hydrocarbon reactor vessel. The analysis is accomplished in accordance with ASME B&PV Code, Section VIII, Division 2 alternate rules in conjunction with the guidelines outlined in WRC Bulletin 429. This provides a sound basis for the classification of the calculated stress intensities. The support skirt is capable of sustaining the deadweight load in addition to resisting the effects of thermal displacements, wind loadings, overturning moments from external piping loads on the attached hydrocarbon reactor vessel, and friction between the skirt base plate and concrete foundation. The displacement and thermal boundary conditions are well defined and discussed in detail. The effects of multiple scenarios for the displacement boundary conditions are examined. The skirt design also employs a hot-box arrangement whereby the primary mode of heat transfer is by radiation. A discussion of the two-part analysis is included and details the interaction between the heat transfer analysis and the subsequent structural analysis. The heat transfer finite element analysis is utilized to determine the temperatures throughout the bottom of the vessel shell and head, as well as the integrally attached support skirt. Of prime importance during the analysis is the axial thermal gradient present in the skirt from the base plate up to and slightly beyond the skirt-to-shell junction. While the geometry of the subject vessel and skirt is best described as axisymmetric, the imposed loadings are a mixture of axisymmetric and non-axisymmetric. This combination lends itself to the judicious selection and utilization of the harmonic finite element and properly chosen Fourier series representation of the applied loads. Comparison of the thermally induced axial stress gradient results from the FEA to those obtained by the closed form beam-on-elastic-foundation are also tendered and discussed. Finally, recommendations are included for the design and analysis of critical support skirts for large, heavy-wall vessels.


1998 ◽  
Vol 26 (1) ◽  
pp. 51-62
Author(s):  
A. L. A. Costa ◽  
M. Natalini ◽  
M. F. Inglese ◽  
O. A. M. Xavier

Abstract Because the structural integrity of brake systems and tires can be related to the temperature, this work proposes a transient heat transfer finite element analysis (FEA) model to study the overheating in drum brake systems used in trucks and urban buses. To understand the mechanics of overheating, some constructive variants have been modeled regarding the assemblage: brake, rims, and tires. The model simultaneously studies the thermal energy generated by brakes and tires and how the heat is transferred and dissipated by conduction, convection, and radiation. The simulated FEA data and the experimental temperature profiles measured with thermocouples have been compared giving good correlation.


Author(s):  
Rama Subba Reddy Gorla

Heat transfer from a nuclear fuel rod bumper support was computationally simulated by a finite element method and probabilistically evaluated in view of the several uncertainties in the performance parameters. Cumulative distribution functions and sensitivity factors were computed for overall heat transfer rates due to the thermodynamic random variables. These results can be used to identify quickly the most critical design variables in order to optimize the design and to make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in heat transfer and to the identification of both the most critical measurements and the parameters.


2014 ◽  
Vol 1063 ◽  
pp. 334-338 ◽  
Author(s):  
Tzu Hao Hung ◽  
Heng Kuang Tsai ◽  
Fuh Kuo Chen ◽  
Ping Kun Lee

Due to the complexity of hot stamping mechanism, including the coupling of material formability, thermal interaction and metallurgical microstructure, it makes the process design more difficult even with the aid of the finite element analysis. In the present study, the experimental platforms were developed to measure and derive the friction and heat transfer coefficients, respectively. The experiments at various elevated temperatures and contact pressures were conducted and the friction coefficients and heat transfer coefficients were obtained. A finite element model was also established with the experimental data and the material properties of the boron steel calculated from the JMatPro software. The finite element simulations for the hot stamping forming of an automotive door beam, including transportation analysis, hot forming analysis and die quenching analysis were then performed to examine the forming properties of the door beam. The validation of the finite element results by the production part confirms the efficiency and accuracy of the developed experimental platforms and the finite element analysis for the process design of hot stamping.


Sign in / Sign up

Export Citation Format

Share Document