Development of Real-Time Look-Ahead Methodology Based on Quintic PH Curve with G2 Continuity for High-Speed Machining

2013 ◽  
Vol 464 ◽  
pp. 258-264 ◽  
Author(s):  
Jing Shi ◽  
Qing Zhen Bi ◽  
Yu Han Wang ◽  
Gang Liu

Curving tool paths composed of straight lines, which are often represented as G01 blocks, are still the most widespread format form in the machining process chain of CAD/CAM/CNC. At the junctions between consecutive segments, the tangency and curvature discontinuities may lead to feedrate fluctuation and acceleration oscillation, which would deteriorate the machining efficiency and quality. In this paper, a real-time look-ahead interpolation methodology is proposed, which adopts a curvature-continuous PH curve as a transition to blend corner at the junction of adjacent lines in the tool path. The blending algorithm can guarantee the approximation error exactly, and the control points of the curve can be calculated analytically. On the other hand, the arc length and the curvature of the transition curve, which are important items in speed planning, also have analytical expressions. All the advantages are the guarantee of calculation efficiency during the interpolation. Except for a curvature-continuous tool path, our look-ahead algorithm adopts a speed planning window strategy to achieve a balance between the calculation capabilities and the real-time interpolation requirements. In this window, the corner transition algorithm and speed planning are implemented simultaneously and dynamically during the interpolation. By defining the width of this window, which is actually the number of linear segments contained in this window, can adjust the time consuming of speed planning. Simulation and experiments on our own developed CNC platform are conducted. The results demonstrate the feasibility and efficiency of the proposed algorithms.

2010 ◽  
Vol 455 ◽  
pp. 599-605
Author(s):  
Yong Qiao Jin ◽  
Yu Han Wang ◽  
Jian Guo Yang

NC tool paths of digital CAD models are currently generated as a set of discrete data points. The CNC interpolator must convert these points into continuous machine tool axis motions. In order to achieve high-speed and high-accuracy machining, the development of a real-time interpolation algorithm is really indispensable, which can deal with a large number of short blocks and still maintain smooth interpolation with an optimal speed. In this paper, a real-time local cubic B-spline interpolator with look-ahead scheme is proposed for consecutive micro-line blocks interpolation. First, the consecutive micro-line blocks that satisfy the bi-chord error constraints are fitted into a C1 continuous cubic B-spline curve. Second, machining dynamics and tool path contour constrains are taken into consideration. Third, local cubic B-spline interpolator with an optimal look-ahead scheme is proposed to generate the optimal speed profile. Simulation and experiment are performed in real-time environment to verify the effectiveness of the proposed method. Compared with the conventional interpolation algorithm, the proposed algorithm reduces the machining time by 70%.


Author(s):  
Hao Tong ◽  
Jing Cui ◽  
Yong Li ◽  
Yang Wang

In 3D scanning micro electro discharge machining (EDM), the CAD/CAM systems being used in mechanical milling of numerical control (NC) are unable to be applied directly due to the particularity of tool electrode wear. Based on industry computer and RT-Linux software platform, a CAD/CAM integration system of 3D micro EDM is developed. In the developed CAD/CAM integration system, the hardware includes mainly a micro feed mechanism for servo control, XY worktable, a high frequency pulse power supply, monitoring circuits etc., and the functions consist of model design, scanning path planning and simulation, NC code generation and post processing, real-time compensating of tool electrode wear, and machining control of states and process. The method of double buffer storage is adopted to transmit numbers of NC machining data. Servo scanning EDM method is used to realize real-time electrode wear compensating and thereby 3D micro structures are machined automatically. The machining experiments are made about model design, parameters optimizing, and process control. The typical 3D micro structures with space curved surfaces and lines have been machined such as micro prism, micro half tube, camber correlation line, and so on. The machining process and results show that the CAD/CAM integration system has the characters of higher real-time, reliability, and general using.


Author(s):  
Lixian Zhang ◽  
Xiao-shan Gao ◽  
Hongbo Li

In this paper, a multi-period turning interpolation algorithm, with real-time look-ahead scheme based on S-curve control method, is presented. In this interpolation algorithm, the geometric precision and the dynamic performance are both satisfied. The machining efficiency is improved by multi-period turning transition, and the precision is also improved by S-curve control method. The computational efficiency of this algorithm meets the need of real-time machining. In addition, there is no accumulated error. At last, this algorithm is verified the validation by the experiments on 3-axis CNC machine.


2010 ◽  
Vol 102-104 ◽  
pp. 544-549 ◽  
Author(s):  
Chun Jiang Zhou ◽  
Hong Chun Chen

The development of surface high-speed machining has put forward higher demands for uniform cutting load and smooth cutting tool path. Most current tool-path planning methods are based on constant scallop height, but they have the disadvantage of path point redundancy during the path discretization process. To overcome the problem, a tool path generation method of equal approximation error in each step for free-form surface is presented based on geodesic principle and curvature judgment. In this method, the NURBS curve is employed to realize smooth transition for adjacent two tool paths in high-speed machining. A certain angle of inclination of flat-end milling cutter during multi-axis machining improves the machining efficiency. Because of the advantage of this machining condition, the cutter location point generation algorithm during the machining condition is given by the method. The method is verified and simulated by C++. Experiment results proved that it can obtain uniform cutting load and continuous smooth cutting tool path during surface high-speed machining by the proposed method.


2009 ◽  
Vol 626-627 ◽  
pp. 611-616
Author(s):  
X.F. Tang ◽  
Wei He ◽  
Y.S. Liu

A new one-side finish machining method for the profile of globoidal indexing cam in high speed, which modifies the tool path of traditional enveloping method, was put forward. The new method is useful for overcoming the defects caused by traditional enveloping method, can realize one-side machining of globoidal indexing cam, can improve the machined surface quality and the meshing characteristics of the cam mechanism. The practical calculation formulas of tool path modification is given, which can be used in developing the CAD/CAM software of the globoidal indexing cam. The new method has great practical value.


2010 ◽  
Vol 126-128 ◽  
pp. 77-81
Author(s):  
Wan Shan Wang ◽  
Peng Guan ◽  
Tian Biao Yu

The future development of the manufacturing is using VR technology to make the machining simulation before the actual machining process made. The machining simulation of Ultra High-speed Grinding Machine Tool is researched in this paper. Firstly, using UG/NX software and VRML, the geometric modeling of machine tool is modeled. Secondly, through using Java and Javascript language, the operation and display of machining process of ultra high-speed grinding are realized. The main technologies include NC codes compiling, collision detection and material removal. Thirdly, the example of machining simulation using virtual ultra high-speed grinding machine tool can be obtained in the paper. Compared to other CNC machining simulation methods, the method in the paper has reality display, rich features, a good man-machine interaction, etc., and it does not rely on expensive CAD/CAM software. The system files generated by the machining simulation have the small size and can be transferred on the network easily.


Author(s):  
Zhiqian Sang ◽  
Xun Xu

Traditional Computer Numerical Control (CNC) machines use ISO6983 (G/M code) for part programming. G/M code has a number of drawbacks and one of them is lack of interoperability. The Standard for the Exchange of Product for NC (STEP-NC) as a potential replacement for G/M code aims to provide a unified and interoperable data model for CNC. In a modern CNC machine tool, more and more motors, actuators and sensors are implemented and connected to the NC system, which leads to large quantity of data being transmitted. The real-time Ethernet field-bus is faster and more deterministic and can fulfill the requirement of data transmission in the high-speed and high-precision machining scenarios. It can provide more determinism on communication, openness, interoperability and reliability than a traditional field-bus. With a traditional CNC system using G/M code, when the machining is interrupted by incidents, restarting the machining process is time-consuming and highly experience-dependent. The proposed CNC controller can generate just-in-time tool paths for feature-based machining from a STEP-NC file. When machining stoppage occurs, the system can recover from stoppage incidents with minimum human intervention. This is done by generating new tool paths for the remaining machining process with or without the availability of the original cutting tool. The system uses a real-time Ethernet field-bus as the connection between the controller and the motors.


2010 ◽  
Vol 426-427 ◽  
pp. 520-524 ◽  
Author(s):  
Song Lin Ding ◽  
John Mo ◽  
D. Yang

Owning to the ultra high feed rate and spindle speed, tool path patterns which are less important in conventional metal cutting processes becomes critical in High Speed Machining (HSM). Without an appropriate tool path strategy HSM can not be fully implemented even though the CNC machine has HSM potentials. In practice attentions are usually drawn to advanced hardware components; tool path pattern catering to HSM is often overlooked. This paper introduces the principles of tool path generation for HSM. Essential properties of HSM and its technical requirements on the CAD/CAM system are summarized. The state-of-the-art technologies and practice-oriented tool path generation methodologies are presented.


Author(s):  
Xiaohong Zhu ◽  
Richard F. Riesenfeld

Abstract Today’s part geometries are becoming ever more complex and require more accurate tool path to manufacture. Machining process efficiency is also a major consideration for designers as well as manufacturing engineers. Although the current advanced CAD/CAM systems have greatly improved the efficiency and accuracy of machining with the introduction of Numerically–Controlled machining, excessive material may still be left on the finished part due to machining constraints, including the inaccessibility of the designed part geometry with respect the cutter, machine motion constraints like ramp angles, specific cutting patterns, etc. Polishing operations such as grinding and hand finishing are quite time consuming and expensive, and may damage the surface of the part or introduce inaccuracies because of human errors. While most of the existing machining approaches attempt to reduce such excessive restmaterials by modifying NC tool paths, none of them is satisfactory. They can be time–consuming, error prone, computationally intensive, too complicated to implement, and limited to certain problem domains. A compensating cleanup tool path will be developed in this research to automatically remove these excessive material from the finish part. This method greatly reduces the burden of hand finishing and polishing, and also reduces the error and complexities introduced in manually generating cleanup tool paths in the shop floor. More important, the tool path generated by this method will reduce the machining time, and increase tool life compared with optimized tool path which left no excessive material behind.


Sign in / Sign up

Export Citation Format

Share Document