Fabrication of Chemically Treated Natural Fibre Reinforced Polymer Matrix Composites and Measurement of its Sound Absorption Coefficients to Regulate Industrial Noise

2013 ◽  
Vol 465-466 ◽  
pp. 896-900
Author(s):  
Elammaran Jayamani ◽  
Pushparaj Ezhumalai ◽  
Sinin Hamdan ◽  
M. Rezaur Rahman

The effects of chemically treated natural fibres (rice straw and kenaf) embedded as filler into polypropylene matrix were investigated for its sound absorption properties to regulate the industrial noise. In this respect, untreated natural fiber as well as treated natural fiber reinforced with polypropylene composites were fabricated and compared. The composites were prepared by compression moulding technique. Its sound absorbing characteristic was investigated with the Impedance tube, according to a transfer function method. A two microphone setup was fabricated according to American society for testing materials ASTM E1050-10 and it is used to measure sound absorption coefficients of composites in the frequency range of 300 Hz to 2000 Hz. The sound absorption coefficients of the composites increased with the frequency. However, at 1000 Hz, the sound absorption coefficient decreased for all treated samples and then increased again which is due to specific character of natural fibers. This point of inflexion was due to the specific characteristic of natural fiber reflecting sound at around 1000 Hz, but absorbing sound in the middle and high frequencies. The results indicates that the process of chemical treatment enhanced the sound absorption coefficients by 12.5% for rice straw reinforced Polypropylene and 15.78% for kenaf fiber reinforced Polypropylene composites respectively.

2014 ◽  
Vol 624 ◽  
pp. 25-29 ◽  
Author(s):  
Elammaran Jayamani ◽  
Sinin Hamdan ◽  
Pushparaj Ezhumalai ◽  
Soon Kok Heng

In this research the Thermogravimetric analysis (TGA) under nitrogen was used to investigate the thermal decomposition processes and sound absorption coefficients was measured using Impedance tube according to ASTM standard E1050 - 10 two microphone method for 2 types of polymer matrix composites. Sample 1 was made of rice straw (RS) reinforced with polypropylene matrix and Sample 2 was made of kenaf fiber reinforced with polypropylene matrix, both composites were fabricated using hot compression moulding technique. The thermal behaviour is of practical interest for conditions associated with temperatures above the atmospheric, as in fire damage, curing or process involving heating procedures. The sound absorption coefficient for a material is the fraction or percentage of incident sound energy that is absorbed by the material. The function of absorptive materials is to transform impinging acoustic energy into heat. The thermal stability of the composites was found to be higher than that of rice straw, kenaf fibers and the polypropylene matrix. The sound absorption coefficients of composites increased as the frequency increased. However, they decreased at the frequency of 1000 Hz and increased again. This decrease and increase was due to the specific characteristic of Lignocellulosic fibers reflecting sound at 1300 Hz but absorbing sound in the middle and high frequency ranges.


2014 ◽  
Vol 663 ◽  
pp. 464-468 ◽  
Author(s):  
Elammaran Jayamani ◽  
Sinin Hamdan ◽  
Soon Kok Heng ◽  
Md. Rezaur Rahman

In this research, the sound absorption coefficients of polymer matrix reinforced lignocellulosic fiber composites were investigated. The sound absorbing characteristic of composites was investigated in the impedance tube, according to transfer function method. A two microphone setup was fabricated according to American society for testing materials ASTM E1050-10 and it is used to measure sound absorption coefficients of composites. In this investigation, the influences of two kinds of polymer matrix (Polypropylene and Urea-formaldehyde) and two kinds of natural fibers (rice straw and kenaf) were studied for sound absorption coefficients. Four samples of novel sound absorbers were made with different matrix and fibers composition, Sample 1 and 2 was made of rice straw reinforced with polypropylene and Urea-formaldehyde and Sample 3 and 4 was made with kenaf fiber reinforced with polypropylene and Urea-formaldehyde matrix. Sound absorption coefficients were measured at frequencies from 300 Hz to 2000 Hz. The results showed when the frequencies increased, sound absorption increased until it reached a frequency of 2000 Hz but at 1200 Hz sound absorption decreased for all the samples this is due to specific character of natural fibers. From the result, the kind of natural fiber did not have significant influences on sound absorption coefficients. As results it was found that the matrix influence more in sound absorption properties in low frequencies; and due to that fact the above composites are low sound absorbing materials; but still they are better than other construction materials available in sound absorbing properties.


BioResources ◽  
2015 ◽  
Vol 10 (2) ◽  
Author(s):  
Elammaran Jayamani ◽  
Sinin Hamdan ◽  
Md Rezaur Rahman ◽  
Muhammad Khusairy Bin Bakri

Author(s):  
K N CHETHAN ◽  
Sharun Hegde ◽  
Rajesh Kumar ◽  
Padmaraj N H

Materials have helped in evolving technology to a great extent. Composites have replaced conventional metals/non-metals because of their lightweight. Natural Fibres have been need of the hour owing to environmental concerns and ease of availability. In this work, Cannabis Sativa fibers were treated with 5% Potassium Hydroxide solution. The laminates were prepared by the Compression Moulding technique by reinforcing treated and untreated fibers with an epoxy matrix material. To access the durability of natural fiber composites in the marine environment, prepared laminates were aged in seawater for 150 days. Tensile, flexural and moisture absorption behavior tests have been performed to estimate the durability in seawater. The data obtained have been compared with pristine treated and untreated fiber reinforced samples. From the results, it has been observed that tensile and flexural behavior of untreated fiber reinforced composites were superior to a treated counterpart in both pristine and aged conditions.


2008 ◽  
Vol 47-50 ◽  
pp. 486-489 ◽  
Author(s):  
Kasama Jarukumjorn ◽  
Nitinat Suppakarn ◽  
Jongrak Kluengsamrong

Natural fiber reinforced polymer composites became more attractive due to their light weight, high specific strength, biodegradability. However, some limitations e.g. low modulus, poor moisture resistance were reported. The mechanical properties of natural fiber reinforced composites can be improved by hybridization with synthetic fibers such as glass fiber. In this research, mechanical properties of short sisal-PP composites and short sisal/glass fiber hybrid composites were studied. Polypropylene grafted with maleic anhydride (PP-g-MA) was used as a compatibilizer to enhance the compatibility between the fibers and polypropylene. Effect of weight ratio of sisal and glass fiber at 30 % by weight on the mechanical properties of the composites was investigated. Morphology of fracture surface of each composite was also observed.


Sign in / Sign up

Export Citation Format

Share Document