A Novel Clustering Routing Protocol with Community Structure Detection for Wireless Sensor Networks

2014 ◽  
Vol 472 ◽  
pp. 460-465 ◽  
Author(s):  
Jie Yu Wu ◽  
Xin Yu Shao ◽  
Hai Ping Zhu

A wireless sensor network (WSN) is a large collection of sensor nodes with limited power supply and constrained computational capability. Clustering routing method in wireless sensor networks has been considered as an important field of research recently to prolong the network lifetime of WSNs. We present a novel clustering method that can balance the energy consumption and extend the lifetime of WSN. Network nodes can be divided into densely connected subgroups through the algorithm of detecting community structure in complex networks. Moreover, the role of cluster-head is scheduled among the cluster members according to the residual energy of nodes, and then the cluster heads send the data to the sink directly. Based on the community clustering strategy, a novel routing protocol, called community structure clustering routing protocol (CSCR), has been raised for WSN. Performance evaluation has shown that the proposed method can achieve improvement compared with LEACH and SEP.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Baniata ◽  
Jiman Hong

The recent advances in sensing and communication technologies such as wireless sensor networks (WSN) have enabled low-priced distributed monitoring systems that are the foundation of smart cities. These advances are also helping to monitor smart cities and making our living environments workable. However, sensor nodes are constrained in energy supply if they have no constant power supply. Moreover, communication links can be easily failed because of unequal node energy depletion. The energy constraints and link failures affect the performance and quality of the sensor network. Therefore, designing a routing protocol that minimizes energy consumption and maximizes the network lifetime should be considered in the design of the routing protocol for WSN. In this paper, we propose an Energy-Efficient Unequal Chain Length Clustering (EEUCLC) protocol which has a suboptimal multihop routing algorithm to reduce the burden on the cluster head and a probability-based cluster head selection algorithm to prolong the network lifetime. Simulation results show that the EEUCLC mechanism enhanced the energy balance and prolonged the network lifetime compared to other related protocols.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Mingchuan Zhang ◽  
Ruijuan Zheng ◽  
Ying Li ◽  
Qingtao Wu ◽  
Liang Song

Energy of nodes is an important factor that affects the performance of Wireless Sensor Networks (WSNs), especially in the case of existing selfish nodes, which attracted many researchers’ attention recently. In this paper, we present a reputation-based uneven clustering routing protocol (R-bUCRP) considering both energy saving and reputation assessment. In the cluster establishment phase, we adopt an uneven clustering mechanism which controls the competitive scope of cluster head candidates to save the energy of WSNs. In the cluster heads election phase, the residual energy and reputation value are used as the indexes to select the optimal cluster head, where the reputation mechanism is introduced to support reputation assessment. Simulation results show that the proposed R-bUCRP can save node energy consumption, balance network energy distribution, and prolong network lifetime.


Many researches have been proposed for efficiency of data transmission from sensor nodes to sink node for energy efficiency in wireless sensor networks. Among them, cluster-based methods have been preferred In this study, we used the angle formed with the sink node and the distance of the cluster members to calculate the probability of cluster head. Each sensor node sends measurement values to header candidates, and the header candidate node measures the probability value of the header with the value received from its candidate member nodes. To construct the cluster members, the data transfer direction is considered. We consider angle, distance, and direction as cluster header possibility value. Experimental results show that data transmission is proceeding in the direction of going to the sink node. We calculated and displayed the header possibility value of the neighbor nodes of the sensor node and confirmed the candidates of the cluster header for data transfer as the value. In this study, residual energy amount of each sensor node is not considered. In the next study, we calculate the value considering the residual energy amount of the node when measuring the header possibility value of the cluster.


2018 ◽  
Vol 44 (1) ◽  
pp. 11-17
Author(s):  
Sayed Seno ◽  
Doaa Abd Ali ◽  
Mohammed Mohammed

Recently, different applications of wireless sensor networks (WSNs) in the industry fields using different data transfer protocols has been developed. As the energy of sensor nodes is limited, prolonging network lifetime in WSNs considered a significant occurrence. To develop network permanence, researchers had considered energy consuming in routing protocols of WSNs by using modified Low Energy Adaptive Clustering Hierarchy. This article presents a developed effective transfer protocols for autonomic WSNs. An efficient routing scheme for wireless sensor network regarded as significant components of electronic devices is proposed. An optimal election probability of a node to be cluster head has being presented. In addition, this article uses a Voronoi diagram, which decomposes the nodes into zone around each node. This diagram used in management architecture for WSNs.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jun Wang ◽  
Zhuangzhuang Du ◽  
Zhengkun He ◽  
Xunyang Wang

Balancing energy consumption using the clustering routing algorithms is one of the most practical solutions for prolonging the lifetime of resource-limited wireless sensor networks (WSNs). However, existing protocols cannot adequately minimize and balance the total network energy dissipation due to the additional tasks of data acquisition and transmission of cluster heads. In this paper, a cluster-head rotating election routing protocol is proposed to alleviate the problem. We discovered that the regular hierarchical clustering method and the scheme of cluster-head election area division had positive effects on reducing the energy consumption of cluster head election and intracluster communication. The election criterion composed of location and residual energy factor was proved to lower the probability of premature death of cluster heads. The chain multihop path of intercluster communication was performed to save the energy of data aggregation to the base station. The simulation results showed that the network lifetime can be efficiently extended by regulating the adjustment parameters of the protocol. Compared with LEACH, I-LEACH, EEUC, and DDEEC, the algorithm demonstrated significant performance advantages by using the number of active nodes and residual energy of nodes as the evaluation indicators. On the basis of these results, the proposed routing protocols can be utilized to increase the capability of WSNs against energy constraints.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenjiang Zhang ◽  
Yanan Wang ◽  
Fuxing Song ◽  
Wenyu Zhang

In wireless sensor networks (WSNs), energy-constrained sensor nodes are always deployed in hazardous and inaccessible environments, making energy management a key problem for network design. The mechanism of RNTA (redundant node transmission agents) lacks an updating mechanism for the redundant nodes, causing an unbalanced energy distribution among sensor nodes. This paper presents an energy-balanced mechanism for hierarchical routing (EBM-HR), in which the residual energy of redundant nodes is quantified and made hierarchic, so that the cluster head can dynamically select the redundant node with the highest residual energy grade as a relay to complete the information transmission to the sink node and achieve an intracluster energy balance. In addition, the network is divided into several layers according to the distances between cluster heads and the sink node. Based on the energy consumption of the cluster heads, the sink node will decide to recluster only in a certain layer so as to achieve an intercluster energy balance. Our approach is evaluated by a simulation comparing the LEACH algorithm to the HEED algorithm. The results demonstrate that the BEM-HR mechanism can significantly boost the performance of a network in terms of network lifetime, data transmission quality, and energy balance.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Parvinder Singh ◽  
Rajeshwar Singh

A wireless sensor network consists of numerous low-power microsensor devices that can be deployed in a geographical area for remote sensing, surveillance, control, and monitoring applications. The advancements of wireless devices in terms of user-friendly interface, size, and deployment cost have given rise to many smart applications of wireless sensor networks (WSNs). However, certain issues like energy efficiency, long lifetime, and communication reliability restrict their large scale utilization. In WSNs, the cluster-based routing protocols assist nodes to collect, aggregate, and forward sensed data from event regions towards the sink node through minimum cost links. A clustering method helps to improve data transmission efficiency by dividing the sensor nodes into small groups. However, improper cluster head (CH) selection may affect the network lifetime, average network energy, and other quality of service (QoS) parameters. In this paper, a multiobjective clustering strategy is proposed to optimize the energy consumption, network lifetime, network throughput, and network delay. A fitness function has been formulated for heterogenous and homogenous wireless sensor networks. This fitness function is utilized to select an optimum CH for energy minimization and load balancing of cluster heads. A new hybrid clustered routing protocol is proposed based on fitness function. The simulation results conclude that the proposed protocol achieves better efficiency in increasing the network lifetime by 63%, 26%, and 10% compared with three well-known heterogeneous protocols: DEEC, EDDEEC, and ATEER, respectively. The proposed strategy also attains better network stability than a homogenous LEACH protocol.


2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Kashif Naseer Qureshi ◽  
Muhammad Umair Bashir ◽  
Jaime Lloret ◽  
Antonio Leon

Wireless sensor networks (WSNs) are becoming one of the demanding platforms, where sensor nodes are sensing and monitoring the physical or environmental conditions and transmit the data to the base station via multihop routing. Agriculture sector also adopted these networks to promote innovations for environmental friendly farming methods, lower the management cost, and achieve scientific cultivation. Due to limited capabilities, the sensor nodes have suffered with energy issues and complex routing processes and lead to data transmission failure and delay in the sensor-based agriculture fields. Due to these limitations, the sensor nodes near the base station are always relaying on it and cause extra burden on base station or going into useless state. To address these issues, this study proposes a Gateway Clustering Energy-Efficient Centroid- (GCEEC-) based routing protocol where cluster head is selected from the centroid position and gateway nodes are selected from each cluster. Gateway node reduces the data load from cluster head nodes and forwards the data towards the base station. Simulation has performed to evaluate the proposed protocol with state-of-the-art protocols. The experimental results indicated the better performance of proposed protocol and provide more feasible WSN-based monitoring for temperature, humidity, and illumination in agriculture sector.


2015 ◽  
Vol 743 ◽  
pp. 748-752 ◽  
Author(s):  
L.F. Liu ◽  
P. Guo ◽  
J. Zhao ◽  
N. Li

Wireless sensor network routing protocol is to prolong the survival time of wireless sensor networks by using the sensor nodes energy efficiently. Traditional LEACH protocol is random in the election of the cluster head, if a less energy node is first elected as a cluster head node, then the node might die soon, it will greatly reducing the lifetime of the network. In order to collect data more efficiently and prolong the network life cycle,we need better clustering protocol. Aim at the traditional LEACH protocol have some weakness,this paper improve the protocol based on traditional LEACH protocol, two influence factors which the residual energy and the number of elected cluster head of the nodes had been introduced to make the clustering more ideal. Simulation results show that compared to the traditional Leach algorithm ,the improved LEACH protocol can prolong the network life cycle more effective and reduce the energy consumption of the whole network.


2013 ◽  
Vol 11 (7) ◽  
pp. 2787-2791
Author(s):  
T. Lalitha ◽  
Jayanthila Devi ◽  
Dr.G.M. Kadh

Energy is an extremely critical resource for battery-powered wireless sensor networks (WSN), thus making energy-efficient protocol design a key challenging problem. Most of the existing energy-efficient routing protocols always forward packets along the minimum energy path to the sink to merely minimize energy consumption, which causes an unbalanced distribution of forming residue energy among sensor nodes, and eventually results in a network partition. In this paper, with the help of the concept of potential in physics, we design an Energy-Balanced Routing Protocol (EBRP) by constructing a mixed virtual potential field in terms of depth, energy density, and residual energy. The goal of this basic approach is to force packets to move toward the sink through the dense energy area to protect the nodes with relatively low residual energy. To address the routing loop problem emerging in this basic algorithm, enhanced mechanisms are proposed to detect and eliminate loops. The basic algorithm and loop elimination mechanism are first validated through extensive simulation experiments. 


Sign in / Sign up

Export Citation Format

Share Document