scholarly journals Energy-Efficient QoS-Aware Intelligent Hybrid Clustered Routing Protocol for Wireless Sensor Networks

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Parvinder Singh ◽  
Rajeshwar Singh

A wireless sensor network consists of numerous low-power microsensor devices that can be deployed in a geographical area for remote sensing, surveillance, control, and monitoring applications. The advancements of wireless devices in terms of user-friendly interface, size, and deployment cost have given rise to many smart applications of wireless sensor networks (WSNs). However, certain issues like energy efficiency, long lifetime, and communication reliability restrict their large scale utilization. In WSNs, the cluster-based routing protocols assist nodes to collect, aggregate, and forward sensed data from event regions towards the sink node through minimum cost links. A clustering method helps to improve data transmission efficiency by dividing the sensor nodes into small groups. However, improper cluster head (CH) selection may affect the network lifetime, average network energy, and other quality of service (QoS) parameters. In this paper, a multiobjective clustering strategy is proposed to optimize the energy consumption, network lifetime, network throughput, and network delay. A fitness function has been formulated for heterogenous and homogenous wireless sensor networks. This fitness function is utilized to select an optimum CH for energy minimization and load balancing of cluster heads. A new hybrid clustered routing protocol is proposed based on fitness function. The simulation results conclude that the proposed protocol achieves better efficiency in increasing the network lifetime by 63%, 26%, and 10% compared with three well-known heterogeneous protocols: DEEC, EDDEEC, and ATEER, respectively. The proposed strategy also attains better network stability than a homogenous LEACH protocol.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Baniata ◽  
Jiman Hong

The recent advances in sensing and communication technologies such as wireless sensor networks (WSN) have enabled low-priced distributed monitoring systems that are the foundation of smart cities. These advances are also helping to monitor smart cities and making our living environments workable. However, sensor nodes are constrained in energy supply if they have no constant power supply. Moreover, communication links can be easily failed because of unequal node energy depletion. The energy constraints and link failures affect the performance and quality of the sensor network. Therefore, designing a routing protocol that minimizes energy consumption and maximizes the network lifetime should be considered in the design of the routing protocol for WSN. In this paper, we propose an Energy-Efficient Unequal Chain Length Clustering (EEUCLC) protocol which has a suboptimal multihop routing algorithm to reduce the burden on the cluster head and a probability-based cluster head selection algorithm to prolong the network lifetime. Simulation results show that the EEUCLC mechanism enhanced the energy balance and prolonged the network lifetime compared to other related protocols.


Author(s):  
Wassim Jerbi ◽  
Abderrahmen Guermazi ◽  
Hafedh Trabelsi

The optimum use of coverage in wireless sensor networks (WSNs) is very important. The hierarchical routing protocol LEACH (Low Energy Adaptive Clustering Hierarchy) is referred to as the basic algorithm of distributed clustering protocols. LEACH allows clusters formation. Each cluster has a leader called Cluster Head (CH). The selection of CHs is made with a probabilistic calculation. It is supposed that each non-CH node join a cluster and becomes a cluster member. Nevertheless, some CHs can be concentrated in a specific part of the network. Thus several sensor nodes cannot reach any CH. As a result, the remaining part of the controlled field will not be covered; some sensor nodes will be outside the network. To solve this problem, the authors propose O-LEACH (Orphan Low Energy Adaptive Clustering Hierarchy), a routing protocol that takes into account the orphan nodes. O-LEACH presents two scenarios, a gateway and sub cluster that allow the joining of orphan nodes.


Author(s):  
Nandoori Srikanth ◽  
Muktyala Sivaganga Prasad

<p>Wireless Sensor Networks (WSNs) can extant the individual profits and suppleness with regard to low-power and economical quick deployment for numerous applications. WSNs are widely utilized in medical health care, environmental monitoring, emergencies and remote control areas. Introducing of mobile nodes in clusters is a traditional approach, to assemble the data from sensor nodes and forward to the Base station. Energy efficiency and lifetime improvements are key research areas from past few decades. In this research, to solve the energy limitation to upsurge the network lifetime, Energy efficient trust node based routing protocol is proposed. An experimental validation of framework is focused on Packet Delivery Ratio, network lifetime, throughput, energy consumption and network loss among all other challenges. This protocol assigns some high energy nodes as trusted nodes, and it decides the mobility of data collector.  The energy of mobile nodes, and sensor nodes can save up to a great extent by collecting data from trusted nodes based on their trustworthiness and energy efficiency.  The simulation outcome of our evaluation shows an improvement in all these parameters than existing clustering and Routing algorithms.<strong></strong></p>


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1835 ◽  
Author(s):  
Ruan ◽  
Huang

Since wireless sensor networks (WSNs) are powered by energy-constrained batteries, many energy-efficient routing protocols have been proposed to extend the network lifetime. However, most of the protocols do not well balance the energy consumption of the WSNs. The hotspot problem caused by unbalanced energy consumption in the WSNs reduces the network lifetime. To solve the problem, this paper proposes a PSO (Particle Swarm Optimization)-based uneven dynamic clustering multi-hop routing protocol (PUDCRP). In the PUDCRP protocol, the distribution of the clusters will change dynamically when some nodes fail. The PSO algorithm is used to determine the area where the candidate CH (cluster head) nodes are located. The adaptive clustering method based on node distribution makes the cluster distribution more reasonable, which balances the energy consumption of the network more effectively. In order to improve the energy efficiency of multi-hop transmission between the BS (Base Station) and CH nodes, we also propose a connecting line aided route construction method to determine the most appropriate next hop. Compared with UCCGRA, multi-hop EEBCDA, EEMRP, CAMP, PSO-ECHS and PSO-SD, PUDCRP prolongs the network lifetime by between 7.36% and 74.21%. The protocol significantly balances the energy consumption of the network and has better scalability for various sizes of network.


2020 ◽  
Vol 10 (21) ◽  
pp. 7886
Author(s):  
Atefeh Rahiminasab ◽  
Peyman Tirandazi ◽  
M. J. Ebadi ◽  
Ali Ahmadian ◽  
Mehdi Salimi

Wireless sensor networks (WSNs) include several sensor nodes that have limited capabilities. The most critical restriction in WSNs is energy resources. Moreover, since each sensor node’s energy resources cannot be recharged or replaced, it is inevitable to propose various methods for managing the energy resources. Furthermore, this procedure increases the network lifetime. In wireless sensor networks, the cluster head has a significant impact on system global scalability, energy efficiency, and lifetime. Furthermore, the cluster head is most important in combining, aggregating, and transferring data that are received from other cluster nodes. One of the substantial challenges in a cluster-based network is to choose a suitable cluster head. In this paper, to select an appropriate cluster head, we first model this problem by using multi-factor decision-making according to the four factors, including energy, mobility, distance to centre, and the length of data queues. Then, we use the Cluster Splitting Process (CSP) algorithm and the Analytical Hierarchy Process (AHP) method in order to provide a new method to solve this problem. These four factors are examined in our proposed approach, and our method is compared with the Base station Controlled Dynamic Clustering Protocol (BCDCP) algorithm. The simulation results show the proposed method in improving the network lifetime has better performance than the base station controlled dynamic clustering protocol algorithm. In our proposed method, the energy reduction is almost 5% more than the BCDCP method, and the packet loss rate in our proposed method is almost 25% lower than in the BCDCP method.


2018 ◽  
Vol 44 (1) ◽  
pp. 11-17
Author(s):  
Sayed Seno ◽  
Doaa Abd Ali ◽  
Mohammed Mohammed

Recently, different applications of wireless sensor networks (WSNs) in the industry fields using different data transfer protocols has been developed. As the energy of sensor nodes is limited, prolonging network lifetime in WSNs considered a significant occurrence. To develop network permanence, researchers had considered energy consuming in routing protocols of WSNs by using modified Low Energy Adaptive Clustering Hierarchy. This article presents a developed effective transfer protocols for autonomic WSNs. An efficient routing scheme for wireless sensor network regarded as significant components of electronic devices is proposed. An optimal election probability of a node to be cluster head has being presented. In addition, this article uses a Voronoi diagram, which decomposes the nodes into zone around each node. This diagram used in management architecture for WSNs.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 403 ◽  
Author(s):  
Goran Popovic ◽  
Goran Djukanovic ◽  
Dimitris Kanellopoulos

Clustering achieves energy efficiency and scalable performance in wireless sensor networks (WSNs). A cluster is formed of several sensor nodes, one of them selected as the cluster head (CH). A CH collects information from the cluster members and sends aggregated data to the base station or another CH. In such a hierarchical WSN, some nodes are possibly moveable or nomadic (relocated periodically), while others are static. The mobility of sensor nodes can improve network performance and prolong network lifetime. This paper presents the idea of mobile, solar-powered CHs that relocate themselves inside clusters in such a way that the total energy consumption in the network is reduced and the network lifetime is extended. The positioning of CHs is made in each round based on a selfish herd hypothesis, where the leader retreats to the center of gravity. Based on this idea, the CH-active algorithm is proposed in this study. Simulation results show that this algorithm has benefits in terms of network lifetime and in the prolongation of the duration of network stability period.


2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Kashif Naseer Qureshi ◽  
Muhammad Umair Bashir ◽  
Jaime Lloret ◽  
Antonio Leon

Wireless sensor networks (WSNs) are becoming one of the demanding platforms, where sensor nodes are sensing and monitoring the physical or environmental conditions and transmit the data to the base station via multihop routing. Agriculture sector also adopted these networks to promote innovations for environmental friendly farming methods, lower the management cost, and achieve scientific cultivation. Due to limited capabilities, the sensor nodes have suffered with energy issues and complex routing processes and lead to data transmission failure and delay in the sensor-based agriculture fields. Due to these limitations, the sensor nodes near the base station are always relaying on it and cause extra burden on base station or going into useless state. To address these issues, this study proposes a Gateway Clustering Energy-Efficient Centroid- (GCEEC-) based routing protocol where cluster head is selected from the centroid position and gateway nodes are selected from each cluster. Gateway node reduces the data load from cluster head nodes and forwards the data towards the base station. Simulation has performed to evaluate the proposed protocol with state-of-the-art protocols. The experimental results indicated the better performance of proposed protocol and provide more feasible WSN-based monitoring for temperature, humidity, and illumination in agriculture sector.


2019 ◽  
Vol 16 (2) ◽  
pp. 496-502
Author(s):  
N. Vadivelan ◽  
A. Ramamurthy ◽  
P. Padmaja

Wireless sensor networks were organized with the collections of sensor nodes for the purpose of monitoring physical phenomenon such as temperature, humidity and seismic events, etc., in the real world environments where the manual human access is not possible. The major tasks of this type of networks are to route the information to sink systems in the sensor network from sensor nodes. Sensors are deployed in a large geographical area where human cannot enter such as volcanic eruption or under the deep sea. Hence sensors are not rechargeable and limited with battery backup; it is very complicated to provide the continuous service of sending information to sink systems from sensor nodes. To overcome the drawback of limited battery power, this paper proposes the concept of minimizing energy consumption with the help of neural networks. The modified form of HRP protocol called energy efficient HRP protocol has been implemented in this paper. Based on this concept, the workload of cluster head is shared by the cluster isolation node in order to increase the lifetime of the cluster head node. Also cluster monitoring node is introduced to reduce the re-clustering process. The implementation procedure, algorithm, results and conclusions were proved that the proposed concept is better than the existing protocols.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Farzad Kiani

Energy issue is one of the most important problems in wireless sensor networks. They consist of low-power sensor nodes and a few base station nodes. They must be adaptive and efficient in data transmission to sink in various areas. This paper proposes an aware-routing protocol based on clustering and recursive search approaches. The paper focuses on the energy efficiency issue with various measures such as prolonging network lifetime along with reducing energy consumption in the sensor nodes and increasing the system reliability. Our proposed protocol consists of two phases. In the first phase (network development phase), the sensors are placed into virtual layers. The second phase (data transmission) is related to routes discovery and data transferring so it is based on virtual-based Classic-RBFS algorithm in the lake of energy problem environments but, in the nonchargeable environments, all nodes in each layer can be modeled as a random graph and then begin to be managed by the duty cycle method. Additionally, the protocol uses new topology control, data aggregation, and sleep/wake-up schemas for energy saving in the network. The simulation results show that the proposed protocol is optimal in the network lifetime and packet delivery parameters according to the present protocols.


Sign in / Sign up

Export Citation Format

Share Document