Optimization of Circular Diamond Saw Blades with Annular Slots

2013 ◽  
Vol 479-480 ◽  
pp. 289-293
Author(s):  
Wei Hsin Gau ◽  
Kun Nan Chen ◽  
Yunn Lin Hwang

Circular diamond saws rotating in high speed are widely used to cut hard materials, and narrow slots on saw blades are sometimes used to reduce the blades vibration and noise. Sizing optimization of the annular slots on saw blades is investigated in this paper. First, an accurate finite element model representing an actual saw blade is obtained by model updating. Then, sizing optimization on two types of annular slots is performed to maximize the frequency separation between the finite element analysis results and the saw blades operational speed, and to reduce the possibility of structural resonance. Optimization results demonstrate great improvements in frequency separation from the rotating speed of 500 Hz for the optimized models.

2014 ◽  
Vol 6 ◽  
pp. 546496
Author(s):  
Wei-Hsin Gau ◽  
Kun-Nan Chen ◽  
Yunn-Lin Hwang

Circular diamond saws rotating in high speed are widely used to cut hard materials, and narrow slots on saw blades are sometimes used to reduce the blades' vibration and noise. Sizing optimization of the internal, annular slots on saw blades is investigated in this paper. First, an accurate finite element model representing an actual saw blade is obtained by model updating. Then, sizing optimization on two types of annular slots is performed to maximize the frequency separation between the finite element analysis results and the saw blade's operational speed and to reduce the possibility of structural resonance. Optimization results demonstrate great improvements in frequency separation from the rotating speed of 500 Hz for the optimized models, and stress analyses on the optimized blade models confirm the structural integrity of the designs.


2011 ◽  
Vol 399-401 ◽  
pp. 1806-1811
Author(s):  
Yong Hong Chen ◽  
Peng Chen ◽  
Ai Qin Tian

The finite element model of the roof of aluminum high-speed train was established, double ellipsoid heat source was employed, and heat elastic-plastic theory was used to simulate welding residual stress of the component under different welding sequence based on the finite element analysis software SYSWELD. The distribution law of welding residual stress was obtained. And the effects of the welding sequence on the value and distribution of residual stress was analyzed. The numerical results showed that the simulation data agree well with experimental test data. The maximum residual stress appears in the weld seam and nearby. The residual stress value decreases far away from the welding center. Welding sequence has a significant impact on the final welding residual stress when welding the roof of aluminum body. The side whose residual stress needs to be controlled should be welded first.


Author(s):  
J. Poirier ◽  
P. Radziszewski

The natural frequencies of circular saws limit the operating speeds of the saws. Current industry methods of increasing natural frequency include pretensioning, where plastic deformation is induced into the saw. To better model the saw, the finite element model is compared to current software for steel saws; C-SAW, a software program that calculates frequencies for stiffened circular saws. Using C-SAW and the finite element method the results are compared and the finite element method is validated for steel saws.


2010 ◽  
Vol 102-104 ◽  
pp. 17-21
Author(s):  
Bin Zhao

In order to study the static and dynamical characteristics of the crankshaft, ANSYS software was used to carry out the corresponding calculations. The entity model of the crankshaft was established by UG software firstly, and then was imported into ANSYS software for meshing, and then the finite element model of the crankshaft was constructed. The crankshaft satisfied the requirement of stiffness and strength through static analysis. The top six natural frequencies and corresponding shapes were acquired through modal analysis, and the every order critical rotating speed of the crankshaft was calculated. The fatigue life of the crank was calculated by fatigue module of ANSYS software finally. These results offered the theoretical guidance for designing, manufacturing and repairing the crankshaft.


2013 ◽  
Vol 284-287 ◽  
pp. 1831-1835
Author(s):  
Wei Hsin Gau ◽  
Kun Nan Chen ◽  
Yunn Lin Hwang

In this paper, two experimental techniques, Electronic Speckle Pattern Interferometry and Stroboscopic Interferometry, and two different finite element analysis packages are used to measure or to analyze the frequencies and mode shapes of a micromachined, cross-shaped torsion structure. Four sets of modal data are compared and shown having a significant discrepancy in their frequency values, although their mode shapes are quite consistent. Inconsistency in the frequency results due to erroneous inputs of geometrical and material parameters to the finite element analysis can be salvaged by applying the finite element model updating procedure. Two updating cases show that the optimization sequences converge quickly and significant improvements in frequency prediction are achieved. With the inclusion of the thickness parameter, the second case yields a maximum of under 0.4% in frequency difference, and all parameters attain more reliable updated values.


2013 ◽  
Vol 683 ◽  
pp. 556-559
Author(s):  
Bin Bin Jiao ◽  
Fu Sheng Yu ◽  
Yun Jiang Li ◽  
Rong Lu Zhang ◽  
Gui Lin Du ◽  
...  

In order to study the distribution of the stress field in the high-speed intermittent cutting process, finite element model of high-speed intermittent cutting is established. Exponential material model of the constitutive equation and adaptive grid technology are applied in the finite element analysis software AdvantEdge. The material processing is simulated under certain cutting conditions with FEM ( Finite Element Method ) and the distribution of cutting force, stress field, and temperature field are received. A periodic variation to the cutting force and temperature is showed in the simulation of high-speed intermittent cutting. Highest value of the milling temperature appears in front contacting area of the knife -the chip.and maximum stress occurs at the tip of tool or the vicinity of the main cutting edge. The analysis of stress and strain fields in-depth is of great significance to improve tool design and durability of tool.


2014 ◽  
Vol 555 ◽  
pp. 555-560 ◽  
Author(s):  
Doru Bardac ◽  
Constantin Dogariu

This paper presents a method to investigate the characteristics of a turning high-speed spindle system. The geometric quality of high-precision parts is highly dependent on the performance of the entire machining system,especially by the main spindle behaviour. The machine tool main spindle units is focused on direct driven spindle units for high-speed and high performance cutting. This paper analyzes the static behavior for a turning machine spindle and presents some activities to improve the CAD model for such complex systems. The proposed models take into account the spindle with the detailed bearing system. The analysis was performed during the design activity and was based on Finite Elements Method. Starting from the 3D designed model, using FEM done by means of ANSYS analysis the structure stiffness was evaluated and, by consequence, the influence on the machine tool precision. The aim of this paper is to develop a finite element model of the machine spindle system and to use this method for design optimization. The 3D model was designed using the SolidWorks CAD software. The static analysis was completed by modal, harmonic response and thermal analysis, but their results will be presented in other papers.


2011 ◽  
Vol 189-193 ◽  
pp. 1849-1853 ◽  
Author(s):  
Jing Zhu Pang ◽  
Bei Zhi Li ◽  
Jian Guo Yang ◽  
Zhen Xin Zhou

Grinding is one of the most important operations in material processing. The study on grinding mechanism is difficult to carry out because of the difficulty in measuring the actual grinding temperature, stress and strain by experiments. Finite element analysis software Deform-3D is employed to create the Johnson-Cook material constitutive model for high-speed grinding simulation. Grinding model was constructed to reflect the temperature, strain and strain rate in the process of grinding 40Cr steel. The temperature of grinding area in simulation is analyzed to verify whether the finite element model is reasonable.


2013 ◽  
Vol 380-384 ◽  
pp. 128-131
Author(s):  
Zhe Yuan ◽  
Zi Fang Qin ◽  
Rui Yuan Cao ◽  
Li Li Song

To improve the performance of diamond saw blade sawing, reduce vibration at the time of its work, prevent the blade resonance, the parametric model of diamond saw blade was been established based on the finite element software ANSYS, and the analysis file was been established through the structural reliability analysis module of the finite element analysis software ANSYS. The finite element method combined with the Monte Carlo method can be used to get the sensitivity index which effect the diamond saw blade security and the probability distribution function and the other principal impact factors, and which is theoretical basis for the diamond saw blade optimization and design.


2016 ◽  
Vol 16 (08) ◽  
pp. 1550049 ◽  
Author(s):  
Fatih Altunel ◽  
Mehmet Çelik ◽  
Mehmet Çalişkan

This study proposes a new correlation improvement technique for the optimum node removal location to get improved modal assurance criterion (MAC) matrix. The technique is applied to updating of the finite element model (FEM) of a structure. The developed routine is tried on a utility helicopter. It is proven that it is capable of showing better performance than the coordinate MAC (coMAC), commonly used in such analyses. Commercial software is utilized for the finite element analysis of the helicopter fuselage and tail. Experimental modal analyses are also performed for updating the model for tail of the helicopter to demonstrate the effectiveness of the new technique.


Sign in / Sign up

Export Citation Format

Share Document