Variable Scale Compressive Tracking Based on Structural Constraint Sample

2014 ◽  
Vol 488-489 ◽  
pp. 1074-1078
Author(s):  
Lu Ping Zhang ◽  
Meng Cai ◽  
Biao Li ◽  
Lu Ping Wang

A variable scale compressive tracking algorithm based on structural constraint sample is presented to solve the variable scale problem in this paper. A number of scanning windows with different scales and positions are obtained by structural constraint sampling.Some sparse random sensing matrices with different scales that can be computed offline easily are adopted to extract the features of different foreground target and background sample image patches with relevant scales online, the sample patch having a maximal score is regarded as the new tracking result by classifying the compressive features via a naive bayesian classifier,meanwhile,to update the location and scale. Experimental results show the proposed algorithm performs favorably against state-of-the-art algorithms on challenging sequences in terms of the basic attitude and scale change, which is robust and does not depend on the scale selection of the initial tracking area.

Author(s):  
Wenhao Wang ◽  
Mingxin Jiang ◽  
Xiaobing Chen ◽  
Li Hua ◽  
Shangbing Gao

In the original compression tracking algorithm, the size of the tracking box is fixed. There should be better tracking results for scale-invariant objects, but worse tracking results for scale-variant objects. To overcome this defect, a scale-adaptive compressive tracking (CT) algorithm is proposed. First of all, the imbalance of the gray and texture features in the original CT algorithm is balanced by the multi-feature method, which makes the algorithm more robust. Then, searching different candidate regions by using the method of multi-scale search along with feature normalization makes the features extracted from different scales comparable. Finally, the candidate region with the maximum discriminate degree is selected as the object region. Thus, the tracking-box size is adaptive. The experimental results show that when the object scale changes, the improving CT algorithm has higher accuracy and robustness than the original CT algorithm.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Heng Fan ◽  
Jinhai Xiang ◽  
Jun Xu ◽  
Honghong Liao

We propose a novel part-based tracking algorithm using online weighted P-N learning. An online weighted P-N learning method is implemented via considering the weight of samples during classification, which improves the performance of classifier. We apply weighted P-N learning to track a part-based target model instead of whole target. In doing so, object is segmented into fragments and parts of them are selected as local feature blocks (LFBs). Then, the weighted P-N learning is employed to train classifier for each local feature block (LFB). Each LFB is tracked through the corresponding classifier, respectively. According to the tracking results of LFBs, object can be then located. During tracking process, to solve the issues of occlusion or pose change, we use a substitute strategy to dynamically update the set of LFB, which makes our tracker robust. Experimental results demonstrate that the proposed method outperforms the state-of-the-art trackers.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lianyu Wang ◽  
Meng Wang ◽  
Tingting Wang ◽  
Qingquan Meng ◽  
Yi Zhou ◽  
...  

Choroid neovascularization (CNV) is one of the blinding factors. The early detection and quantitative measurement of CNV are crucial for the establishment of subsequent treatment. Recently, many deep learning-based methods have been proposed for CNV segmentation. However, CNV is difficult to be segmented due to the complex structure of the surrounding retina. In this paper, we propose a novel dynamic multi-hierarchical weighting segmentation network (DW-Net) for the simultaneous segmentation of retinal layers and CNV. Specifically, the proposed network is composed of a residual aggregation encoder path for the selection of informative feature, a multi-hierarchical weighting connection for the fusion of detailed information and abstract information, and a dynamic decoder path. Comprehensive experimental results show that our proposed DW-Net achieves better performance than other state-of-the-art methods.


2013 ◽  
Vol 631-632 ◽  
pp. 1270-1275
Author(s):  
Yuan Min Liu ◽  
Lian Fang Tian

In view of the shortage of the KLT (Kanade-Lucas-Tomasi) tracking algorithm, an improved adaptive tracking method based on KLT is proposed in this paper, in which a kind of filtering mechanism is applied to decrease the effects of noise and illumination on tracking system. In order to eliminate the error of tracking, the strategies based on forward-backward error and measurement validity are utilized properly. However, because the approach to forward-backward error makes the feature points reduce, which leads to tracking failure especially when the shapes of object change, a method for appending the feature points is introduced. Experimental results indicate that the method presented in this paper is state of the art robustness in our comparison with related work and demonstrate improved generalization over the conventional methods.


2020 ◽  
Vol 34 (05) ◽  
pp. 8368-8375
Author(s):  
Zibo Lin ◽  
Ziran Li ◽  
Ning Ding ◽  
Hai-Tao Zheng ◽  
Ying Shen ◽  
...  

Paraphrase generation aims to rewrite a text with different words while keeping the same meaning. Previous work performs the task based solely on the given dataset while ignoring the availability of external linguistic knowledge. However, it is intuitive that a model can generate more expressive and diverse paraphrase with the help of such knowledge. To fill this gap, we propose Knowledge-Enhanced Paraphrase Network (KEPN), a transformer-based framework that can leverage external linguistic knowledge to facilitate paraphrase generation. (1) The model integrates synonym information from the external linguistic knowledge into the paraphrase generator, which is used to guide the decision on whether to generate a new word or replace it with a synonym. (2) To locate the synonym pairs more accurately, we adopt an incremental encoding scheme to incorporate position information of each synonym. Besides, a multi-task architecture is designed to help the framework jointly learn the selection of synonym pairs and the generation of expressive paraphrase. Experimental results on both English and Chinese datasets show that our method significantly outperforms the state-of-the-art approaches in terms of both automatic and human evaluation.


Author(s):  
Yang Bin ◽  
Yang Chao ◽  
Huang Guoyu

In this paper, an efficient approximate sparse representation (SR) algorithm with multi-selection strategy is used to solve the image fusion problem. We have shown that the approximate SR is effective for image fusion even if the sparse coefficients are not the sparsest ones possible. A multi-selection strategy is used to accelerate the process of generating the approximate sparse coefficients which are used to guide the fusion of image patches. The relative parameters are also investigated experimentally to further reduce the computational time. The proposed method is compared with some state-of-the-art image fusion approaches on several pairs of multi-source images. The experimental results exhibit that the proposed method is able to yield superior fusion results with less consumption time.


2020 ◽  
Vol 8 (1) ◽  
pp. 33-41
Author(s):  
Dr. S. Sarika ◽  

Phishing is a malicious and deliberate act of sending counterfeit messages or mimicking a webpage. The goal is either to steal sensitive credentials like login information and credit card details or to install malware on a victim’s machine. Browser-based cyber threats have become one of the biggest concerns in networked architectures. The most prolific form of browser attack is tabnabbing which happens in inactive browser tabs. In a tabnabbing attack, a fake page disguises itself as a genuine page to steal data. This paper presents a multi agent based tabnabbing detection technique. The method detects heuristic changes in a webpage when a tabnabbing attack happens and give a warning to the user. Experimental results show that the method performs better when compared with state of the art tabnabbing detection techniques.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 325
Author(s):  
Zhihao Wu ◽  
Baopeng Zhang ◽  
Tianchen Zhou ◽  
Yan Li ◽  
Jianping Fan

In this paper, we developed a practical approach for automatic detection of discrimination actions from social images. Firstly, an image set is established, in which various discrimination actions and relations are manually labeled. To the best of our knowledge, this is the first work to create a dataset for discrimination action recognition and relationship identification. Secondly, a practical approach is developed to achieve automatic detection and identification of discrimination actions and relationships from social images. Thirdly, the task of relationship identification is seamlessly integrated with the task of discrimination action recognition into one single network called the Co-operative Visual Translation Embedding++ network (CVTransE++). We also compared our proposed method with numerous state-of-the-art methods, and our experimental results demonstrated that our proposed methods can significantly outperform state-of-the-art approaches.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Changyong Li ◽  
Yongxian Fan ◽  
Xiaodong Cai

Abstract Background With the development of deep learning (DL), more and more methods based on deep learning are proposed and achieve state-of-the-art performance in biomedical image segmentation. However, these methods are usually complex and require the support of powerful computing resources. According to the actual situation, it is impractical that we use huge computing resources in clinical situations. Thus, it is significant to develop accurate DL based biomedical image segmentation methods which depend on resources-constraint computing. Results A lightweight and multiscale network called PyConvU-Net is proposed to potentially work with low-resources computing. Through strictly controlled experiments, PyConvU-Net predictions have a good performance on three biomedical image segmentation tasks with the fewest parameters. Conclusions Our experimental results preliminarily demonstrate the potential of proposed PyConvU-Net in biomedical image segmentation with resources-constraint computing.


2021 ◽  
pp. 026553222110361
Author(s):  
Chao Han

Over the past decade, testing and assessing spoken-language interpreting has garnered an increasing amount of attention from stakeholders in interpreter education, professional certification, and interpreting research. This is because in these fields assessment results provide a critical evidential basis for high-stakes decisions, such as the selection of prospective students, the certification of interpreters, and the confirmation/refutation of research hypotheses. However, few reviews exist providing a comprehensive mapping of relevant practice and research. The present article therefore aims to offer a state-of-the-art review, summarizing the existing literature and discovering potential lacunae. In particular, the article first provides an overview of interpreting ability/competence and relevant research, followed by main testing and assessment practice (e.g., assessment tasks, assessment criteria, scoring methods, specificities of scoring operationalization), with a focus on operational diversity and psychometric properties. Second, the review describes a limited yet steadily growing body of empirical research that examines rater-mediated interpreting assessment, and casts light on automatic assessment as an emerging research topic. Third, the review discusses epistemological, psychometric, and practical challenges facing interpreting testers. Finally, it identifies future directions that could address the challenges arising from fast-changing pedagogical, educational, and professional landscapes.


Sign in / Sign up

Export Citation Format

Share Document