The Study of Train Operation Plan of Night Train on Beijing-Guangzhou High-Speed Railway under Segmented Rectangular Maintenance Time Window

2014 ◽  
Vol 505-506 ◽  
pp. 619-623
Author(s):  
Hao Jia ◽  
Bao Ming Han ◽  
Qi Zhang

Considering the demand of night train on Beijing-Guangzhou high-speed railway, two modes of segmented rectangular maintenance time window are discussed. Methods to make train operation plans under these two modes are proposed, aiming at shortening the train waiting time and making the departure and arrival time more reasonable. Comparing the new designed train operation plans with the original one under the vertical rectangular maintenance time window, it shows that segmented rectangular maintenance time window is better in night train operation.

Author(s):  
L. Nie ◽  
D. B. Fei ◽  
S. D. Zhou ◽  
H. L. Fu ◽  
L. Tong

The Beijing-Shanghai High speed railway line (Hereinafter referred to as “Jing-Hu HSL”) is one of the most important railway lines in the Chinese rapid passenger transportation network and will be put into operation at the end of 2011. Train line planning directly reflects the quality and competition ability of train services. The characteristics of operational conditions and passenger flow of this corridor HSL bring about a few new issues on train line planning like night train operation, train OD sets, cyclic operation, and train stop schedule. For the first issue, a large amount of long distance travel demand put forward the demand for night services, which causes great conflict with the time-window for maintenance work. The confliction can be solved by harmoniously utilizing the parallel lines. For the second one, in view of the differences of technical and economic factors between HSL and conventional railways, high frequency and medium-long distance train will dominate HSL’s train service plan rather than low frequency and long distance trains on conventional railways. Thus, part of long-distance passenger flow has to transfer at some stations. Considering the whole possible ODs over Jing-Hu HSL and the transfer condition of related stations, the optimal OD sets and corresponding transfer plan is suggested. High frequency makes HSL possible to operate trains cyclically to improve service quality. However, with too many train ODs and some special trains, e.g. night train, an incomplete cyclic train operation mode is more practical. The ODs which can provide cyclic service for Jing-Hu HSL need to be identified. For the last issue, although non-stop long-distance train is a very popular kind of service in China, it should be reconsidered for Jing-Hu HSL line because of massive intercity travel demand and regular stops required. Each of the above issues is very complex. What is more, they have close relationship between each other. Due to limited space, the methods used to solve these issues are given in conceptual way rather than detailed description of mathematical model. The research paves the way for future integration study to design an efficient, economic, convenient, and regular train service plan for Jing-Hu HSL.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 503
Author(s):  
Zicong Meng ◽  
Tao Tang ◽  
Guodong Wei ◽  
Lei Yuan

With the gradual maturity of the automatic train operation (ATO) system in subways, its application scope has also expanded to the high-speed railway field. Considering that the ATO system is still in the early stages of operation, it will take time to fully mature, and definite specifications of the requirements for system operation have not yet been formed. This paper presents the operational design domain (ODD) of the high-speed railway ATO system and proposes a scenario analysis method based on the operational design domain to obtain the input conditions of the system requirements. The article models and verifies the scenario of the linkage control of the door and platform door based on the UPPAAL tools and extracts the input and expected output of the system requirements of the vehicle ATO system. Combined with the input conditions of the system requirements, the system requirements of the vehicle ATO in this scenario are finally obtained, which provides a reference for future functional specification generation and test case generation.


Author(s):  
Minling Feng ◽  
Chaoxian Wu ◽  
Shaofeng Lu ◽  
Yihui Wang

Automatic train operation (ATO) systems are fast becoming one of the key components of the intelligent high-speed railway (HSR). Designing an effective optimal speed trajectory for ATO is critical to guide the high-speed train (HST) to operate with high service quality in a more energy-efficient way. In many advanced HSR systems, the traction/braking systems would provide multiple notches to satisfy the traction/braking demands. This paper modelled the applied force as a controlled variable based on the selection of notch to realise a notch-based train speed trajectory optimisation model to be solved by mixed integer linear programming (MILP). A notch selection model with flexible vertical relaxation was proposed to allow the traction/braking efforts to change dynamically along with the selected notch by introducing a series of binary variables. Two case studies were proposed in this paper where Case study 1 was conducted to investigate the impact of the dynamic notch selection on train operations, and the optimal result indicates that the applied force can be flexibly adjusted corresponding to different notches following a similar operation sequence determined by optimal train control theory. Moreover, in addition to the maximum traction/braking notches and coasting, medium notches with appropriate vertical relaxation would be applied in accordance with the specific traction/braking demands to make the model feasible. In Case study 2, a comprehensive numerical example with the parameters of CRH380AL HST demonstrates the robustness of the model to deal with the varying speed limit and gradient in a real-world scenario. The notch-based model is able to obtain a more realistic optimal strategy containing dynamic notch selection and speed trajectory with an increase (1.622%) in energy consumption by comparing the results of the proposed model and the non-notch model.


2012 ◽  
Vol 253-255 ◽  
pp. 1273-1277
Author(s):  
Xue Dong Du ◽  
Na Ren

The research of high-speed railway running economic benefit is important to timely know well the train operation state for the railway administration. A prediction model of high-speed railway running economic benefit is proposed in this article based on Gray model. The Gray model is a good example to make accurate prediction of the development of matters. According to the data analysis of Beijing and Shanghai railway stations, we can know that the result of prediction model is accurate, so the prediction based on Gray model is scientific and reasonable in the practical application.


2020 ◽  
Vol 10 (12) ◽  
pp. 4164
Author(s):  
Hyoung June Kim

In this study, a genetic algorithm was used to calculate the scheduled waiting time according to the train operation frequency of heterogeneous trains operating on one track. The acquired data were then used to determine the appropriate subsidiary track at which high-speed trains can load or release cargo away from low-speed trains. A metaheuristic genetic algorithm was applied and implemented using Javascript/jQuery. Six cases were investigated, which provided values of subsidiary track that vary according to the operation frequencies of different types of trains, and solutions were derived through 100 simulations using a stochastic method. The analysis results showed that the train overtaking frequency was the highest at the third intermediate station within the simulation, suggesting that this particular station requires a subsidiary track, even if the operating frequency of each train differs across the entire track considered in this study. The results of this study are expected to facilitate objective and practical planning during railway construction.


Innotrans ◽  
2016 ◽  
pp. 6-9
Author(s):  
Jia Gao ◽  
◽  
Lu Li ◽  
Jiuhong Ruan ◽  
Feng Nan ◽  
...  

2014 ◽  
Vol 505-506 ◽  
pp. 489-492 ◽  
Author(s):  
Peng Fei Zhou ◽  
Bao Ming Han ◽  
Qi Zhang

High-speed railway passenger train operation plan is an important basis to ensure the quality of transportation services. With construction and development of the country's high-speed railway, design and evaluation of railway passenger train plan theory need to be improved and perfected. On the basis of reading and studying a large amount of the references, this paper summarizes the domestic and overseas high-speed running railway operation modes, the high speed railway train operation programs design and other aspects. Besides, according to the related problems and shortcomings, this paper illustrates the meanings and necessities of analyzing the high-speed railway passenger train program.


Author(s):  
Yixiang Yue ◽  
Leishan Zhou

Regarding the railway station tracks and train running routes as machines, all trains in this railway station as jobs, dispatching trains in high-speed railway passenger stations can be considered as a special type of Job-Shop Problem (JSP). In this paper, we proposed a multi-machines, multi-jobs JSP model with special constraints for Operation Plan Scheduling Problem (OPSP) in high-speed railway passenger stations, and presented a fast heuristic algorithm based on greedy heuristic. This algorithm first divided all operations into several layers according to the yards attributes and the operation’s urgency level. Then every operation was allotted a feasible time window, each operation was assigned to a specified “machine” sequenced or backward sequenced within the time slot, layer by layer according to its priority. As we recorded and modified the time slots dynamically, the searching space was decreased dramatically. And we take the South Beijing High-speed Railway Station as example and give extensive numerical experiment. Computational results based on real-life instance show that the algorithm has significant merits for large scale problems; can both reduce tardiness and shorten cycle times. The empirical evidence also proved that this algorithm is industrial practicable.


Sign in / Sign up

Export Citation Format

Share Document