Application of Parallel Mechanism in Multi-DIM Vibration Absorbers

2014 ◽  
Vol 532 ◽  
pp. 297-300 ◽  
Author(s):  
Chang Chun Yu

It introduces ways and means of designing this kind of vibration absorbers which are presented using parallel mechanisms as the main mechanisms ,it ,which takes the parallel mechanisms with 3-DOF translation as an example, validates the feasibility of the method, and enumerates some of the parallel mechanisms that are fit for multi-DIM vibration absorber. In a word, the multi-DIM vibration absorber system based on parallel mechanism is a new idea and breakthrough in multi-DIM vibration absorption field, which has the characteristic of simple structure, compact mechanism, high accuracy, partially or fully decoupled mechanism easy for control and so on, and provides a new method for the study of Multi-DIM vibration.

2019 ◽  
Vol 30 (7) ◽  
pp. 1043-1052 ◽  
Author(s):  
Jin-Siang Shaw ◽  
Cheng-An Wang

In this study, we used two tunable vibration absorbers composed of shape memory alloy to reduce vibration of a platform structure. The natural frequency of the shape memory alloy absorber can be tuned online using a fuzzy logic controller to change the axial force of the shape memory alloy wires through phase transformation. In addition, we employed the finite element method to analyze the dynamic characteristics of the multimode platform structure and to evaluate the effectiveness of the shape memory alloy vibration absorber in terms of platform vibration attenuation. Experimental testing of the platform structure was conducted to verify its modal characteristics. By setting the two shape memory alloy tunable vibration absorbers on two adjacent sides of the platform at 90 degrees to each other and offset from the platform’s center axes, it is shown that all six modes can be covered for vibration absorption. The experiments show that the vibration due to all six mode modal excitations can be attenuated by more than 7.49 dB using the shape memory alloy tunable vibration absorber. Specifically, at the fourth, fifth, and sixth resonant modes, an average of 16.68 dB vibration suppression is observed. Overall, an average of 12.69 dB vibration suppression is achieved for resonant excitation of the entire platform structure when using the designed shape memory alloy tunable vibration absorber.


1996 ◽  
Vol 118 (1) ◽  
pp. 36-40 ◽  
Author(s):  
R. Quan ◽  
D. Stech

A time varying extension of the passive vibration absorber is described, which increases the effectiveness of a small number of passive vibration absorbers on large or changing flexible structures. Initially, the extended absorber is targeted on a subset of the modes of the flexible structure. A stable switching scheme is described, which allows the absorber to target different subsets of modes, or to adapt to changes in the flexible structure. Computer simulation and experimental work are given which demonstrate the effectiveness of the extended absorber.


Author(s):  
Duanling Li ◽  
Chunxia Li ◽  
Zhonghai Zhang ◽  
Xianwen Kong

Metamorphic transformation is a fundamental and key issue in the design and analysis of metamorphic mechanisms. It is tedious to represent and calculate the metamorphic transformations of metamorphic parallel mechanisms using the existing adjacency matrix method. To simplify the configuration transformation analysis, we propose a new method based on block adjacency matrix to analyze the configuration transformations of metamorphic parallel mechanisms. A block adjacency matrix is composed of three types of elements, including limb matrices that are adjacency matrices each representing a limb of a metamorphic parallel mechanism, row matrices each representing how a limb is connected to the moving platform, and column matrices each representing how a limb is connected to the base. Manipulations of the block adjacency matrix for analyzing the metamorphic transformations are presented systematically. If only the internal configuration of a limb changes, the configuration transformations can be obtained by simply calculating the corresponding limb matrix. A 3-URRRR metamorphic parallel mechanism, which has five configurations including a 1-DOF translation configuration and a 3-DOF spherical motion configuration, is taken as an example to illustrate the effectiveness of the proposed approach to the metamorphic transformation analysis of metamorphic parallel mechanism.


Author(s):  
Mainak Mitra ◽  
Andrea Lupini ◽  
Bogdan I. Epureanu

Abstract The vibration absorber or tuned mass damper is a well-known mechanism, where a small mass connected to a larger structure is used to redirect vibration energy and provide reduction in vibration amplitudes at desired locations and frequencies. While tuned vibration absorbers have been widely applied for damping of mechanical systems, the concept remains largely unexplored in the design of dampers for bladed disks. This paper investigates whether such a vibration absorption mechanism is feasible for such nominally cyclic symmetric structures which are characterized by double modes, high modal density, and sensitivity to uncertainties such as mistuning. The single-degree of freedom vibration absorber concept is extended for application to this complex modal space, and lumped mass models are used for analysis. Trends in effectiveness of a vibration absorption based damper are explored by studying sensitivities to various parameters such as stiffness and damping at various locations. Effects of mistuning across sectors and locations of damper attachment are also considered. The results of the study establish the feasibility of the vibration absorption mechanism for application in blisks, and encourage further exploration of the concept, possibly in conjunction with other well-established damping mechanisms such as friction.


2018 ◽  
Vol 15 (6) ◽  
pp. 172988141881264
Author(s):  
Ziwei Zhang ◽  
Guoying Meng

A novel mobile serial–parallel mechanism with legs for in-pipe use is proposed. The mobile robotic mechanism is composed of two identical three-universal joint–prismatic joint–universal joint parallel mechanisms connected in series and two gripping modules. The proposed parallel mechanism has two rotational freedoms and one translational freedom. In addition, the parallel mechanism can achieve continuous and equivalent rotation. The singularities of the parallel mechanism are analyzed. The overall serial–parallel mechanism has six degrees of freedom, and each gripping module has four degrees of freedom. Each parallel mechanism in the waist module is driven by three servo-electric cylinders and each leg mechanism in the gripping modules is controlled by a linear actuator. The robotic mechanism can perform peristaltic movement and turning in space. The robotic mechanism possesses a simple structure and high flexibility, along with the merits of serial–parallel mechanism. In this article, analytic models for the kinematics and dynamics of the robotic mechanism are derived. Additionally, numerical examples are given, and their solutions are validated based on results obtained by SimMechanics and Adams.


Author(s):  
Shuguang Huang ◽  
Joseph M. Schimmels

This paper presents a new method for the realization of a planar compliant behavior with an elastic mechanism. The mechanisms considered are parallel mechanisms with symmetric geometry. We show that any planar stiffness matrix can be realized using a parallel mechanism with four line springs connected symmetrically. Among the four springs, two are identical parallel springs equidistant from the stiffness center, and the other two identical springs intersect at the stiffness center. A synthesis procedure is presented.


1996 ◽  
Vol 176 ◽  
pp. 53-60 ◽  
Author(s):  
J.-F. Donati

In this paper, I will review the capabilities of magnetic imaging (also called Zeeman-Doppler imaging) to reconstruct spot distributions of surface fields from sets of rotationnally modulated Zeeman signatures in circularly polarised spectral lines. I will then outline a new method to measure small amplitude magnetic signals (typically 0.1% for cool active stars) with very high accuracy. Finally, I will present and comment new magnetic images reconstructed from data collected in 1993 December at the Anglo-Australian Telescope (AAT).


2012 ◽  
Vol 170-173 ◽  
pp. 2924-2928
Author(s):  
Sheng Biao Chen ◽  
Yun Zhi Tan

In order to measure the water drainage volume in soil mechanical tests accurately, it develop a new method which is based on principles of optics. And from both physical and mathematic aspects, it deduces the mathematic relationship between micro change in displacement and the increment projected on screen. The result shows that total reflection condition is better than refraction condition. What’s more, the screen could show the water volume micro variation clearly, so it can improve the accuracy of measurement.


2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Haitao Liu ◽  
Ke Xu ◽  
Huiping Shen ◽  
Xianlei Shan ◽  
Tingli Yang

Abstract Direct kinematics with analytic solutions is critical to the real-time control of parallel mechanisms. Therefore, the type synthesis of a mechanism having explicit form of forward kinematics has become a topic of interest. Based on this purpose, this paper deals with the type synthesis of 1T2R parallel mechanisms by investigating the topological structure coupling-reducing of the 3UPS&UP parallel mechanism. With the aid of the theory of mechanism topology, the analysis of the topological characteristics of the 3UPS&UP parallel mechanism is presented, which shows that there are highly coupled motions and constraints amongst the limbs of the mechanism. Three methods for structure coupling-reducing of the 3UPS&UP parallel mechanism are proposed, resulting in eight new types of 1T2R parallel mechanisms with one or zero coupling degree. One obtained parallel mechanism is taken as an example to demonstrate that a mechanism with zero coupling degree has an explicit form for forward kinematics. The process of type synthesis is in the order of permutation and combination; therefore, there are no omissions. This method is also applicable to other configurations, and novel topological structures having simple forward kinematics can be obtained from an original mechanism via this method.


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Fu-Qun Zhao ◽  
Sheng Guo ◽  
Hai-Jun Su ◽  
Hai-Bo Qu ◽  
Ya-Qiong Chen

Abstract As the structures of multiarm robots are serially arranged, the packaging and transportation of these robots are often inconvenient. The ability of these robots to operate objects must also be improved. Addressing this issue, this paper presents a type of multiarm robot that can be adequately folded into a designed area. The robot can achieve different operation modes by combining different arms and objects. First, deployable kinematic chains (DKCs) are designed, which can be folded into a designated area and be used as an arm structure in the multiarm robot mechanism. The strategy of a platform for storing DKCs is proposed. Based on the restrictions in the storage area and the characteristics of parallel mechanisms, a class of DKCs, called base assembly library, is obtained. Subsequently, an assembly method for the synthesis of the multiarm robot mechanism is proposed, which can be formed by the connection of a multiarm robot mechanism with an operation object based on a parallel mechanism structure. The formed parallel mechanism can achieve a reconfigurable characteristic when different DKCs connect to the operation object. Using this method, two types of multiarm robot mechanisms with four DKCs that can switch operation modes to perform different tasks through autonomous combination and release operation is proposed. The obtained mechanisms have observable advantages when compared with the traditional mechanisms, including optimizing the occupied volume during transportation and using parallel mechanism theory to analyze the switching of operation modes.


Sign in / Sign up

Export Citation Format

Share Document