An Improved Cloud Adaptive Genetic Algorithm Based on Cloud Computing for Active Optimization Calculation

2015 ◽  
Vol 713-715 ◽  
pp. 1579-1582
Author(s):  
Shao Min Zhang ◽  
Ze Wu ◽  
Bao Yi Wang

Under the background of huge amounts of data in large-scale power grid, the active power optimization calculation is easy to fall into local optimal solution, and meanwhile the calculation demands a higher processing speed. Aiming at these questions, the farmer fishing algorithm which is applied to solve the problem of optimal distribution of active load for coal-fired power units is used to improve the cloud adaptive genetic algorithm (CAGA) for speeding up the convergence phase of CAGA. The concept of cloud computing algorithm is introduced, and parallel design has been done through MapReduce graphs. This method speeds up the calculation and improves the effectiveness of the active load optimization allocation calculation.

2014 ◽  
Vol 538 ◽  
pp. 193-197
Author(s):  
Jian Jiang Su ◽  
Chao Che ◽  
Qiang Zhang ◽  
Xiao Peng Wei

The main problems for Genetic Algorithm (GA) to deal with the complex layout design of satellite module lie in easily trapping into local optimality and large amount of consuming time. To solve these problems, the Bee Evolutionary Genetic Algorithm (BEGA) and the adaptive genetic algorithm (AGA) are introduced. The crossover operation of BEGA algorithm effectively reinforces the information exploitation of the genetic algorithm, and introducing random individuals in BEGA enhance the exploration capability and avoid the premature convergence of BEGA. These two features enable to accelerate the evolution of the algorithm and maintain excellent solutions. At the same time, AGA is adopted to improve the crossover and mutation probability, which enhances the escaping capability from local optimal solution. Finally, satellite module layout design based on Adaptive Bee Evolutionary Genetic Algorithm (ABEGA) is proposed. Numerical experiments of the satellite module layout optimization show that: ABEGA outperforms SGA and AGA in terms of the overall layout scheme, enveloping circle radius, the moment of inertia and success rate.


2013 ◽  
Vol 321-324 ◽  
pp. 2137-2140 ◽  
Author(s):  
Bing Chang Ouyang

Considering discrete demand and time-vary unit production cost under a foreseeable time horizon, this study presents an adaptive genetic algorithm to determine the production policy for one manufacturer supplying single item to multiple warehouses in a supply chain environment. Based on Distribution Requirement Planning (DRP) and Just in Time (JIT) delivery policy, we assume each gene in chromosome represents a period. Standard GA operators are used to generate new populations. These populations are evaluated by a fitness function using the total cost of production scheme. An explicit procedure for obtaining the local optimal solution is provided.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Kun Hao ◽  
Jiale Zhao ◽  
Beibei Wang ◽  
Yonglei Liu ◽  
Chuanqi Wang

An adaptive genetic algorithm based on collision detection (AGACD) is proposed to solve the problems of the basic genetic algorithm in the field of path planning, such as low convergence path quality, many iterations required for convergence, and easily falling into the local optimal solution. First, this paper introduces the Delphi weight method to evaluate the weight of path length, path smoothness, and path safety in the fitness function, and a collision detection method is proposed to detect whether the planned path collides with obstacles. Then, the population initialization process is improved to reduce the program running time. After comprehensively considering the population diversity and the number of algorithm iterations, the traditional crossover operator and mutation operator are improved, and the adaptive crossover operator and adaptive mutation operator are proposed to avoid the local optimal solution. Finally, an optimization operator is proposed to improve the quality of convergent individuals through the second optimization of convergent individuals. The simulation results show that the adaptive genetic algorithm based on collision detection is not only suitable for simulation maps with various sizes and obstacle distributions but also has excellent performance, such as greatly reducing the running time of the algorithm program, and the adaptive genetic algorithm based on collision detection can effectively solve the problems of the basic genetic algorithm.


Cloud computing is a research trend which bring various cloud services to the users. Cloud environment face various challenges and issues to provide efficient services. In this paper, a novel Genetic Algorithm based load balancing algorithm has been implemented to balance the load in the network. The literature review has been studied to understand the research gap. More specifically, load balancing technique authenticate the network by enabling Virtual Machines (VM). The proposed technique has been further evaluated using the Schedule Length Runtime (SLR) and Energy consumption (EC) parameters. Overall, the effective results has been obtained such as 46% improvement in consuming the energy and 12 % accuracy for the SLR measurement. In addition, results has been compared with the conventional approaches to validate the outcomes.


Author(s):  
Bernard K.S. Cheung

Genetic algorithms have been applied in solving various types of large-scale, NP-hard optimization problems. Many researchers have been investigating its global convergence properties using Schema Theory, Markov Chain, etc. A more realistic approach, however, is to estimate the probability of success in finding the global optimal solution within a prescribed number of generations under some function landscapes. Further investigation reveals that its inherent weaknesses that affect its performance can be remedied, while its efficiency can be significantly enhanced through the design of an adaptive scheme that integrates the crossover, mutation and selection operations. The advance of Information Technology and the extensive corporate globalization create great challenges for the solution of modern supply chain models that become more and more complex and size formidable. Meta-heuristic methods have to be employed to obtain near optimal solutions. Recently, a genetic algorithm has been reported to solve these problems satisfactorily and there are reasons for this.


2020 ◽  
Vol 12 (6) ◽  
pp. 2177
Author(s):  
Jun-Ho Huh ◽  
Jimin Hwa ◽  
Yeong-Seok Seo

A Hierarchical Subsystem Decomposition (HSD) is of great help in understanding large-scale software systems from the software architecture level. However, due to the lack of software architecture management, HSD documentations are often outdated, or they disappear in the course of repeated changes of a software system. Thus, in this paper, we propose a new approach for recovering HSD according to the intended design criteria based on a genetic algorithm to find an optimal solution. Experiments are performed to evaluate the proposed approach using two open source software systems with the 14 fitness functions of the genetic algorithm (GA). The HSDs recovered by our approach have different structural characteristics according to objectives. In the analysis on our GA operators, crossover contributes to a relatively large improvement in the early phase of a search. Mutation renders small-scale improvement in the whole search. Our GA is compared with a Hill-Climbing algorithm (HC) implemented by our GA operators. Although it is still in the primitive stage, our GA leads to higher-quality HSDs than HC. The experimental results indicate that the proposed approach delivers better performance than the existing approach.


2013 ◽  
Vol 760-762 ◽  
pp. 1690-1694
Author(s):  
Jian Xia Zhang ◽  
Tao Yu ◽  
Ji Ping Chen ◽  
Ying Hao Lin ◽  
Yu Meng Zhang

With the wide application of UAV in the scientific research,its route planning is becoming more and more important. In order to design the best route planning when UAV operates in the field, this paper mainly puts to use the simple genetic algorithm to design 3D-route planning. It primarily introduces the advantages of genetic algorithm compared to others on the designing of route planning. The improvement of simple genetic algorithm is because of the safety of UAV when it flights higher, and the 3D-route planning should include all the corresponding areas. The simulation results show that: the improvement of simple genetic algorithm gets rid of the dependence of parameters, at the same time it is a global search algorithm to avoid falling into the local optimal solution. Whats more, it can meet the requirements of the 3D-route planning design, to the purpose of regional scope and high safety.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
I. Hameem Shanavas ◽  
R. K. Gnanamurthy

In Optimization of VLSI Physical Design, area minimization and interconnect length minimization is an important objective in physical design automation of very large scale integration chips. The objective of minimizing the area and interconnect length would scale down the size of integrated chips. To meet the above objective, it is necessary to find an optimal solution for physical design components like partitioning, floorplanning, placement, and routing. This work helps to perform the optimization of the benchmark circuits with the above said components of physical design using hierarchical approach of evolutionary algorithms. The goal of minimizing the delay in partitioning, minimizing the silicon area in floorplanning, minimizing the layout area in placement, minimizing the wirelength in routing has indefinite influence on other criteria like power, clock, speed, cost, and so forth. Hybrid evolutionary algorithm is applied on each of its phases to achieve the objective. Because evolutionary algorithm that includes one or many local search steps within its evolutionary cycles to obtain the minimization of area and interconnect length. This approach combines a hierarchical design like genetic algorithm and simulated annealing to attain the objective. This hybrid approach can quickly produce optimal solutions for the popular benchmarks.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zhaosheng Yang ◽  
Duo Mei ◽  
Qingfang Yang ◽  
Huxing Zhou ◽  
Xiaowen Li

To increase the efficiency and precision of large-scale road network traffic flow prediction, a genetic algorithm-support vector machine (GA-SVM) model based on cloud computing is proposed in this paper, which is based on the analysis of the characteristics and defects of genetic algorithm and support vector machine. In cloud computing environment, firstly, SVM parameters are optimized by the parallel genetic algorithm, and then this optimized parallel SVM model is used to predict traffic flow. On the basis of the traffic flow data of Haizhu District in Guangzhou City, the proposed model was verified and compared with the serial GA-SVM model and parallel GA-SVM model based on MPI (message passing interface). The results demonstrate that the parallel GA-SVM model based on cloud computing has higher prediction accuracy, shorter running time, and higher speedup.


Sign in / Sign up

Export Citation Format

Share Document