Vibration Control on Shells through Theoretical and Numerical Analysis

2014 ◽  
Vol 539 ◽  
pp. 18-21
Author(s):  
De Xin Ren ◽  
Jie Hong ◽  
Lu Lu Chen

A theoretical and numerical study has been performed on an air film damper attached to a plate structure. Combined with the analysis by Fox and Whitton, a damping model of the air film damper has been developed. A complex stiffness was introduced to represent the air pressure in the damper cavity. The stain energy and dissipated energy were integrated from the real part and imaginary part of the complex stiffness to determine the stiffness and damping. The response of the plate with the air film damper was considered by treating the air film as multiple discrete damping-stiffness elements using ANSYS.

Author(s):  
Ba Phi Nguyen ◽  
Huu Dinh Dang

In this paper, we investigate numerically wave propagation and localization in a complex random potential with power-law correlations. Using a discrete stationary Schrӧdinger equation with the simultaneous presence of the spatial correlation and the non-Hermiticity of the random potential in the diagonal on-site terms of the Hamiltonian, we calculate the disorder-averaged logarithmic transmittance and the localization length. From the numerical analysis, we find that the presence of power-law correlation in the imaginary part of the on-site disordered potential gives rise to the localization enhancement as compared with the case of absence of correlation. Depending on the disorder's strength, we show that there exist different behaviors of the dependence of the localization on the correlation strength.


2021 ◽  
Vol 910 ◽  
Author(s):  
Alejandro Millán-Merino ◽  
Eduardo Fernández-Tarrazo ◽  
Mario Sánchez-Sanz

Abstract


2021 ◽  
Vol 20 ◽  
pp. 103676
Author(s):  
Amjad Ali ◽  
Muhammad Yasin Khan ◽  
Muhammad Sinan ◽  
F.M. Allehiany ◽  
Emad E. Mahmoud ◽  
...  

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Sannia Mareta ◽  
Dunant Halim ◽  
Atanas A. Popov

This work proposes a method for controlling vibration using compliant-based actuators. The compliant actuator combines a conventional actuator with elastic elements in a series configuration. The benefits of compliant actuators for vibration control applications, demonstrated in this work, are twofold: (i) vibration reduction over a wide frequency bandwidth by passive control means and (ii) improvement of vibration control performance when active control is applied using the compliant actuator. The vibration control performance is compared with the control performance achieved using the well-known vibration absorber and conventional rigid actuator systems. The performance comparison showed that the compliant actuator provided a better flexibility in achieving vibration control over a certain frequency bandwidth. The passive and active control characteristics of the compliant actuator are investigated, which shows that the control performance is highly dependent on the compliant stiffness parameter. The active control characteristics are analyzed by using the proportional-derivative (PD) control strategy which demonstrated the capability of effectively changing the respective effective stiffness and damping of the system. These attractive dual passive–active control characteristics are therefore advantageous for achieving an effective vibration control system, particularly for controlling the vibration over a specific wide frequency bandwidth.


2011 ◽  
Vol 422 ◽  
pp. 575-579
Author(s):  
Chong Nian Qu ◽  
Liang Sheng Wu ◽  
Jian Feng Ma ◽  
Yi Chuan Xiao

In this document, using the anti-squeezed force model in the narrow parallel plate when fluid is squeezed, the equivalent stiffness and damping model is derived. It is further verified that it can increase the stiffness and damping while there are oil between the joint interfaces theoretically. Because the contact state of oily porous material can divide into liquid and solid parts, the document supposes that it is correct and effective to think the stiffness and damping of the two parts as shunt connection.


Author(s):  
Sang-Won Kim ◽  
Youn-Jea Kim

An axial-flow pump has a relatively high discharge flow rate and specific speed at a relatively low head and it consists of an inlet guide vane, impeller, and outlet guide vane. The interaction of the flow through the inlet guide vane, impeller, and outlet guide vane of the axial-flow pump has a significant effect on its performance. Of those components, the guide vanes especially can improve the head and efficiency of the pump by transforming the kinetic energy of the rotating flow, which has a tangential velocity component, into pressure energy. Accordingly, the geometric configurations of the guide vanes such as blade thickness and angle are crucial design factors for determining the performance of the axial-flow pump. As the reliability of Computational Fluid Dynamics (CFD) has been elevated together with the advance in computer technology, numerical analysis using CFD has recently become an alternative to empirical experiment due to its high reliability to measure the flow field. Thus, in this study, 1,200mm axial-flow pump having an inlet guide vane and impeller with 4 blades and an outlet guide vane with 6 blades was numerically investigated. Numerical study was conducted using the commercial CFD code, ANSYS CFX ver. 16.1, in order to elucidate the effect of the thickness and angle of the guide vanes on the performance of 1,200mm axial-flow pump. The stage condition, which averages the fluxes between interfaces and is accordingly appropriate for the evaluation of pump performance, was adopted as the interface condition between the guide vanes and the impeller. The rotational periodicity condition was used in order to enable a simplified geometry to be used since the guide vanes feature multiple identical regions. The shear stress transport (SST) k-ω model, predicting the turbulence within the flow in good agreement, was also employed in the CFD calculation. With regard to the numerical simulation results, the characteristics of the pressure distribution were discussed in detail. The pump performance, which will determine how well an axial-flow pump will work in terms of its efficiency and head, was also discussed in detail, leading to the conclusion on the optimal blade thickness and angle for the improvement of the performance. In addition, the total pressure loss coefficient was considered in order to investigate the loss within the flow paths depending on the thickness and angle variations. The results presented in this study may give guidelines to the numerical analysis of the axial-flow pump and the investigation of the performance for further optimal design of the axial-flow pump.


Sign in / Sign up

Export Citation Format

Share Document