Computational Investigation of Film Cooling from Cylindrical and Row Trenched Cooling Holes near the Combustor End Wall

2014 ◽  
Vol 554 ◽  
pp. 225-229 ◽  
Author(s):  
Nor Azwadi Che Sidik ◽  
Kianpour Ehsan

This study was accomplished in order to investigate the effects of cylindrical and row trenched cooling holes with alignment angle of 0 degree and 90 degree at blowing ratio, BR = 3.18 on the film cooling performance adjacent to the endwall surface of a combustor simulator. In this research a three dimensional representation of Pratt and Whitney gas turbine engine was simulated and analyzed with a commercial finite volume package FLUENT 6.2. The current study has been performed with Reynolds-averaged Navier-Stokes turbulence model (RANS) on internal cooling passages. This combustor simulator combined the interaction of two rows of dilution jets, which were staggered in the stream wise direction and aligned in the span wise direction, with that of film cooling along the combustor liner walls. The findings of the study declared that with using the row trenched holes near the endwall surface, film cooling effectiveness is doubled compared to the cooling performance of baseline case.

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Nor Azwadi ◽  
Ehsan Kianpour

This paper presents the effects of blowing ratio on film cooling performance adjacent to the combustor endwall using cylindrical and row trenched cooling holes with alignment angle of 90 degrees. A three-dimensional representation of a Pratt and Whitney gas turbine engine was simulated and analysed using a commercial finite volume package FLUENT 6.2.26. The combustor simulator was designed to combine the interaction of two rows of dilution jets, which were staggered in the streamwise direction and aligned in the spanwise direction. As a result, the combustor with row trenched holes gave almost doubled cooling performance compared to the baseline case. In addition, the film cooling layer was increased at high blowing ratio, and thus it enhanced the cooling performance.


Author(s):  
Siavash Khajehhasani ◽  
Bassam Jubran

A numerical investigation of the film cooling performance from novel sister shaped single-holes (SSSH) is presented in this paper and the obtained results are compared with a single cylindrical hole, a forward diffused shaped hole, as well as discrete sister holes. Three types of the novel sister shaped single-hole schemes namely downstream, upstream and up/downstream SSSH, are designed based on merging the discrete sister holes to the primary hole in order to reduce the jet lift-off effect and increase the lateral spreading of the coolant on the blade surface as well as a reduction in the amount of coolant in comparison with discrete sister holes. The simulations are performed using three-dimensional Reynolds-Averaged Navier Stokes analysis with the realizable k–ε model combined with the standard wall function. The upstream SSSH demonstrates similar film cooling performance to that of the forward diffused shaped hole for the low blowing ratio of 0.5. While it performs more efficiently at M = 1, where the centerline and laterally averaged effectiveness results improved by 70% and 17%, respectively. On the other hand, the downstream and up/downstream SSSH schemes show a considerable improvement in film cooling performance in terms of obtaining higher film cooling effectiveness and less jet lift-off effect as compared with the single cylindrical and forward diffused shaped holes for both blowing ratios of M = 0.5 and 1. For example, the laterally averaged effectiveness for the downstream SSSH configuration shows an improvement of approximately 57% and 110% on average as compared to the forward diffused shaped hole for blowing ratios of 0.5 and 1, respectively.


2014 ◽  
Vol 695 ◽  
pp. 389-392
Author(s):  
Shahin Salimi ◽  
Nor Azwadi Che Sidik ◽  
Leila Jahanshaloo ◽  
Kianpour Ehsan

A numerical simulation has been performed for the investigation of flow and heat transfer characteristics of a film cooling injected through a hole with cylindrical and compound angle orientation. This paper presents the effects of coolant injector configuration of cylindrical and compound cooling holes with alignment angle of 30 degree at blowing ratio, BR = 3.18 on the film cooling effectiveness near the end wall surface of a combustor simulator. In the current research a three dimensional representation of Pratt and Whitney gas turbine engine was simulated and analyzed with a commercial finite volume package ANSYS FLUENT 14.0. This study has been performed with Reynolds-averaged Navier-Stokes turbulence model (RANS) on internal cooling passages The results indicate that using compound angle cooling holes injection, give much better protection than that obtained when simple angle cooling holes were used.


2014 ◽  
Vol 695 ◽  
pp. 376-379 ◽  
Author(s):  
Kianpour Ehsan ◽  
Nor Azwadi Che Sidik

The current study was conducted to analyze the effects of cylindrical and row trenched cooling holes with alignment angle of 90 degrees at blowing ratio, BR = 1.25 on the film cooling effectiveness near the end wall surface of a combustor simulator. In the current research a three dimensional representation of Pratt and Whitney gas turbine engine was simulated and analyzed with a commercial finite volume package FLUENT 6.2.26. This study has been performed with Reynolds-averaged Navier-Stokes turbulence model (RANS) on internal cooling passages. This combustor simulator combined the interaction of two rows of dilution jets, which were staggered in the stream wise direction and aligned in the span wise arrangement, with that of film cooling along the combustor liner walls. The findings of the study declared that with using the row trenched holes near the end wall surface, film cooling effectiveness is increased three times compared to the cooling performance of baseline case.


2019 ◽  
Vol 23 (1) ◽  
pp. 246-252
Author(s):  
Ehsan Kianpour ◽  
Nor Azwadi Che Sidik

Abstract To analyse the effects of cylindrical- and row-trenched cooling holes with an alignment angle of 90 degrees on the film-cooling effectiveness near the combustor end wall surface at a blowing ratio of 3.18, the current research was done. This research included a 3D representation of a Pratt and Whitney gas turbine engine, which was simulated and analysed with a commercial finite volume package FLUENT 6.2.26. The analysis was done with Reynolds-averaged Navier–Stokes turbulence model on internal cooling passages. This combustor simulator was combined with the interaction of two rows of dilution jets, which were staggered in the streamwise direction and aligned in the spanwise direction. In comparison with the baseline case of cooling holes, using row-trenched hole near the end wall surface increased the film-cooling effectiveness 44% in average.


2019 ◽  
Vol 29 (8) ◽  
pp. 2728-2753
Author(s):  
Guohua Zhang ◽  
Xueting Liu ◽  
Bengt Ake Sundén ◽  
Gongnan Xie

Purpose This study aims to clarify the mechanism of film hole location at the span-wise direction of an internal cooling channel with crescent ribs on the adiabatic film cooling performance, three configurations are designed to observe the effects of the distance between the center of the ellipse and the side wall(Case 1, l = w/2, Case 2, l = w/3 and for Case 3, l = w/4). Design/methodology/approach Numerical simulations are conducted under two blowing ratios (i.e. 0.5 and 1) and a fixed cross-flow Reynolds number (Rec = 100,000) with a verified turbulence model. Findings It is shown that at low blowing ratio, reducing the distance increases the film cooling effectiveness but keeps the trend of the effectiveness unchanged, while at high blowing ratio, the characteristic is a little bit different in the range of 0 = x/D = 10. Research limitations/implications These features could be explained by the fact that shrinking the distance between the hole and side wall induces a much smaller reserved region and vortex downstream the ribs and a lower resistance for cooling air entering the film hole. Furthermore, the spiral flow inside the hole is impaired. Originality/value As a result, the kidney-shaped vortices originating from the jet flow are weakened, and the target surface can be well covered, resulting in an enhancement of the adiabatic film cooling performance.


Author(s):  
Yongbin Ji ◽  
Prashant Singh ◽  
Srinath V. Ekkad ◽  
Shusheng Zhang

Film cooling behavior of a single cylindrical hole inclined at an angle of 35° with respect to a flat surface is numerically predicted in this study. Adiabatic film cooling effectiveness has been presented to evaluate the influence of the scoop placed on the coolant entry side. The effect of blowing ratio (0.65, 1, 1.5 and 2) and the length-to-diameter ratio (1.7 and 4.4) are examined. Three-dimensional Reynolds-averaged Navier-Stokes analysis with SST turbulence model is used for the computations. It has been found that both centerline and laterally averaged adiabatic film cooling effectiveness are enhanced by the scoop and the enhancement increases with the blowing ratio in the investigated range of variables. The scoop was more effective for the higher length-to-diameter ratio cases (L/D = 4.4) because of better velocity distribution at the film hole exit, which makes coolant reattach at a more upstream location after blowing off from the wall.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Ki-Don Lee ◽  
Kwang-Yong Kim

This paper presents a numerical investigation of the film-cooling performance of a novel film-cooling hole in comparison with a fan-shaped hole. The novel shaped hole is designed to increase the lateral spreading of coolant on the cooling surface. The film-cooling performance of the novel shaped hole is evaluated at a density ratio of 1.75 and the range of the blowing ratio of 0.5–2.5. The simulations were performed using three-dimensional Reynolds-averaged Navier–Stokes analysis with the SST k-ω model. The numerical results for the fan-shaped hole show very good agreement with the experimental data. For the blowing ratio of 0.5, the novel shaped film-cooling hole shows a similar cooling performance as the fan-shaped hole. However, as the blowing ratio increases, the novel shaped hole shows greatly improved lateral spreading of the coolant and the cooling performance in terms of the film-cooling effectiveness in comparison with the fan-shaped hole.


Author(s):  
Sun-min Kim ◽  
Ki-Don Lee ◽  
Kwang-Yong Kim

Film-cooling has been widely used as the important alternative to protect the turbine blade. Since the film-cooling hole geometry is one of the most influential parameters for film-cooling performance, various film-cooling hole schemes have been developed to increase cooling performance for the past few decades. In the present work, numerical analysis has been performed to investigate and to compare the film-cooling performance of various film-cooling hole schemes such as fan-shaped, crescent, louver, and dumbbell holes. For analyzes of the turbulent flow and film-cooling, three-dimensional Reynolds-averaged Navier-Stokes analysis has been performed with shear stress transport turbulence model. The validation of numerical results has been performed in comparison with experimental data. The flow characteristics and film-cooling performance for each hole shape have been investigated and evaluated in terms of local- and averaged film-cooling effectivenesses.


Author(s):  
Jianxia Luo ◽  
Cunliang Liu ◽  
Huiren Zhu

Film cooling performances of three film holes have been numerical researched in this paper, including a lateral inclined cylindrical hole, a fan-shaped hole and a y-shaped hole. The simulation is computed by the commercial software Fluent based on Reynolds Averaged Navier-Stokes (RANS) equations and realizable k-ε turbulence model with enhanced wall treatment. The y-shaped hole is a novel film hole developed from the lateral inclined cylindrical hole. With inner crossflow, the jet of the lateral inclined cylindrical hole performs to be two streams as a result of the helical motion in the hole. Accordingly, the hole exit was optimized with two expansions: one is expanded along the lateral inclined direction and the other is expanded along the mainstream flow direction. The lateral inclined cylindrical hole with two expansions at the exit is named the y-shaped hole. Compared to the fundamental lateral inclined cylindrical hole, the y-shaped hole has different counter-rotating vortices and much better film coverage. Experiments have been conducted to test the film cooling performance of the y-shaped hole. Compared to the lateral inclined cylindrical hole, much higher film cooling effectiveness has been measured in the y-shaped hole as a result of the enhanced lateral film coverage and the weakened film dissipation in the streamwise direction. The film performance of the y-shaped hole rises with the increase of the blowing ratio. At M = 2.0, the film of the y-shaped hole keeps close to the wall while the film of the lateral inclined cylindrical hole is completely lifted up, resulting in the increase of the area average film cooling effectiveness up to 128.7%.


Sign in / Sign up

Export Citation Format

Share Document