Analyzes of Film Cooling from Cylindrical and Row Trenched Holes with Alignment Angle of 90 Degrees at Low Blowing Ratio

2014 ◽  
Vol 695 ◽  
pp. 376-379 ◽  
Author(s):  
Kianpour Ehsan ◽  
Nor Azwadi Che Sidik

The current study was conducted to analyze the effects of cylindrical and row trenched cooling holes with alignment angle of 90 degrees at blowing ratio, BR = 1.25 on the film cooling effectiveness near the end wall surface of a combustor simulator. In the current research a three dimensional representation of Pratt and Whitney gas turbine engine was simulated and analyzed with a commercial finite volume package FLUENT 6.2.26. This study has been performed with Reynolds-averaged Navier-Stokes turbulence model (RANS) on internal cooling passages. This combustor simulator combined the interaction of two rows of dilution jets, which were staggered in the stream wise direction and aligned in the span wise arrangement, with that of film cooling along the combustor liner walls. The findings of the study declared that with using the row trenched holes near the end wall surface, film cooling effectiveness is increased three times compared to the cooling performance of baseline case.

2019 ◽  
Vol 23 (1) ◽  
pp. 246-252
Author(s):  
Ehsan Kianpour ◽  
Nor Azwadi Che Sidik

Abstract To analyse the effects of cylindrical- and row-trenched cooling holes with an alignment angle of 90 degrees on the film-cooling effectiveness near the combustor end wall surface at a blowing ratio of 3.18, the current research was done. This research included a 3D representation of a Pratt and Whitney gas turbine engine, which was simulated and analysed with a commercial finite volume package FLUENT 6.2.26. The analysis was done with Reynolds-averaged Navier–Stokes turbulence model on internal cooling passages. This combustor simulator was combined with the interaction of two rows of dilution jets, which were staggered in the streamwise direction and aligned in the spanwise direction. In comparison with the baseline case of cooling holes, using row-trenched hole near the end wall surface increased the film-cooling effectiveness 44% in average.


2014 ◽  
Vol 695 ◽  
pp. 389-392
Author(s):  
Shahin Salimi ◽  
Nor Azwadi Che Sidik ◽  
Leila Jahanshaloo ◽  
Kianpour Ehsan

A numerical simulation has been performed for the investigation of flow and heat transfer characteristics of a film cooling injected through a hole with cylindrical and compound angle orientation. This paper presents the effects of coolant injector configuration of cylindrical and compound cooling holes with alignment angle of 30 degree at blowing ratio, BR = 3.18 on the film cooling effectiveness near the end wall surface of a combustor simulator. In the current research a three dimensional representation of Pratt and Whitney gas turbine engine was simulated and analyzed with a commercial finite volume package ANSYS FLUENT 14.0. This study has been performed with Reynolds-averaged Navier-Stokes turbulence model (RANS) on internal cooling passages The results indicate that using compound angle cooling holes injection, give much better protection than that obtained when simple angle cooling holes were used.


2014 ◽  
Vol 554 ◽  
pp. 225-229 ◽  
Author(s):  
Nor Azwadi Che Sidik ◽  
Kianpour Ehsan

This study was accomplished in order to investigate the effects of cylindrical and row trenched cooling holes with alignment angle of 0 degree and 90 degree at blowing ratio, BR = 3.18 on the film cooling performance adjacent to the endwall surface of a combustor simulator. In this research a three dimensional representation of Pratt and Whitney gas turbine engine was simulated and analyzed with a commercial finite volume package FLUENT 6.2. The current study has been performed with Reynolds-averaged Navier-Stokes turbulence model (RANS) on internal cooling passages. This combustor simulator combined the interaction of two rows of dilution jets, which were staggered in the stream wise direction and aligned in the span wise direction, with that of film cooling along the combustor liner walls. The findings of the study declared that with using the row trenched holes near the endwall surface, film cooling effectiveness is doubled compared to the cooling performance of baseline case.


Author(s):  
Gazi I. Mahmood ◽  
Ross Gustafson ◽  
Sumanta Acharya

The measured flow field and temperature field near a three-dimensional asymmetric contour endwall employed in a linear blade cascade are presented with and without film-cooling flow on the endwall. Flow field temperature and Nusselt number distributions along the asymmetric endwall with wall heating and no film-cooling flow are also reported to show local high heat transfer region on the endwall and justify the locations of the coolant holes. Adiabatic film-cooling effectiveness along the endwall is then measured to indicate the local effects of the coolant jets. The near endwall flow field and temperature field provide the coolant flow behavior and the interaction of coolant jets with the boundary layer flow. Thus, the local film-cooling effectiveness can be explained with the coolant jet trajectories. The measurements are obtained at the Reynolds number of 2.30×105 based on blade actual chord and inlet velocity, coolant-to-free stream temperature ratio of 0.93, and coolant-to-free stream density ratio of 1.06. The cascade employs the hub side blade section and passage geometry of the first stage rotor of GE-E3 turbine engine. The contour endwall profile is employed on the bottom endwall only in the cascade. The blowing ratio of the film-cooling flow varies from 1.0 to 2.4 from 71 discrete cylindrical holes located in the contour endwall. The three-dimensional profile of the endwall varies in height in both the pitchwise and axial directions. The flow field is quantified with the streamwise vorticity and turbulent intensity, pitchwise static pressure difference, flow yaw angle, and pitchwise velocity. Both the flow field and temperature data indicate that the coolant jets cover more distance in the pitchwise and axial direction in the passage as the blowing ratio increases. Thus, the local and average film-cooling effectiveness increase with the blowing ratio.


Author(s):  
Jin Wang ◽  
Bengt Sundén ◽  
Min Zeng ◽  
Qiu-Wang Wang

Three-dimensional simulations of the squealer tip on the GE-E3 blade with eight film cooling holes were carried out. To form the wake by the trailing edges of the stator vanes, cylindrical rods and delta wings were placed upstream of the blades. The rods were placed according to three positions, and the influence on the film cooling effectiveness was calculated. Because delta wings were placed upstream of the blades to generate in the vane passage, the passage flow also was investigated. However, the passage vortex generated by the delta wings had a profound effect on the passage flow distribution. For the squealer tip, the cavity contributes to the improvement of the cooling effect in the tip zone. The passage flow and the tip leakage flow influenced by cylindrical rods and delta wings were analyzed using numerical simulations with the blowing ratio of M = 0.5. In addition, calculations with and without cylindrical rods and delta wings were performed and then comparisons were enabled. It was found that the vortex created by delta wings made the passage flow more turbulent and the result indicates a slight effect on the film cooling effectiveness in the tip gap.


Author(s):  
Lesley M. Wright ◽  
Evan L. Martin

Detailed film cooling effectiveness distributions are obtained on a flat plate using the pressure sensitive paint (PSP) technique. The effects of average blowing ratio (M = 0.25–1.0) and coolant – to – mainstream density ratio (DR = 1.0–1.4) are evaluated in a low speed wind tunnel with a freestream velocity of 8.5 m/s and a freestream turbulence intensity of 6.8%. The coolant – to – mainstream density ratio is varied by using either nitrogen (DR = 1.0) or argon (DR = 1.4) as the coolant gases. The double hole geometry consists of a row of simple angle (θ = 35°), cylindrical holes coupled with one row of compound angle holes (θ = 45°, β = 50°). With the selected geometry, the compound holes effectively weaken the counter rotating vortex pair formed within the traditional simple angle hole. Therefore, the surface film cooling effectiveness is increased compared to a single row of simple angle film cooling holes. While increasing the blowing ratio decreases the film cooling effectiveness, the severity of the film cooling effectiveness reduction is less than with the single row of holes.


Author(s):  
Yongbin Ji ◽  
Prashant Singh ◽  
Srinath V. Ekkad ◽  
Shusheng Zhang

Film cooling behavior of a single cylindrical hole inclined at an angle of 35° with respect to a flat surface is numerically predicted in this study. Adiabatic film cooling effectiveness has been presented to evaluate the influence of the scoop placed on the coolant entry side. The effect of blowing ratio (0.65, 1, 1.5 and 2) and the length-to-diameter ratio (1.7 and 4.4) are examined. Three-dimensional Reynolds-averaged Navier-Stokes analysis with SST turbulence model is used for the computations. It has been found that both centerline and laterally averaged adiabatic film cooling effectiveness are enhanced by the scoop and the enhancement increases with the blowing ratio in the investigated range of variables. The scoop was more effective for the higher length-to-diameter ratio cases (L/D = 4.4) because of better velocity distribution at the film hole exit, which makes coolant reattach at a more upstream location after blowing off from the wall.


2013 ◽  
Vol 716 ◽  
pp. 699-704 ◽  
Author(s):  
Ping Dai ◽  
Nai Yun Yu

Effects of hole shapes on film cooling effectiveness downstream of one row of film holes at the blade were investigated using a three-dimensional finite volume method and multi-block technique. The present study also received velocity vectors about different hole shapes. The hole geometries studied include standard cylindrical hole and forward diffused shaped hole and converging slot-hole. It was found that the film cooling effectiveness of cylindrical holes obviously declined along with increasing the blowing ratio. Results of the shaped holes configuration present a marked improvement, with a high effectiveness at the lateral area between adjacent holes and effectiveness of the converging slot-hole was superior to other holes in various blowing ratios. The film cooling effectiveness realized by the slot-holes compared to the cylindrical and forward diffused shaped holes was more excelled at downstream of the intersection of the two slot-holes. The converging slot-hole and forward diffused shaped hole can reduce the vortex intensity, and then enhance the film cooling effectiveness.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Shiou-Jiuan Li ◽  
Akhilesh P. Rallabandi ◽  
Je-Chin Han

Detailed film cooling effectiveness distributions along a modeled turbine rotor blade under the combined effects of an upstream trailing edge unsteady wake with coolant ejection are presented using the pressure sensitive paint (PSP) mass transfer analogy method. The experiment is conducted in a low speed wind tunnel facility with a five blade linear cascade. The exit Reynolds number based on the axial chord is 370,000. Unsteady wakes and trailing edge coolant jets are produced by a spoked wheel-type wake generator with hollow rods equipped with several coolant ejections from holes. The coolant-to-mainstream density ratios for both the blade and trailing edge coolant ejection range from 1.5 to 2.0 for simulating realistic engine conditions. Blade blowing ratio studies are 0.5 and 1.0 on the suction surface and 1.0 and 2.0 on the pressure surface. The trailing edge jet blowing ratio and Strouhal numbers are 1.0 and 0.12, respectively. The results show that the unsteady wake reduces the overall film cooling effectiveness. However, the unsteady wake with trailing edge coolant ejection enhances the overall effectiveness. The results also show that the overall filming cooling effectiveness increases by using heavier coolant for trailing edge ejection and for blade surface film cooling.


2013 ◽  
Vol 740 ◽  
pp. 836-841
Author(s):  
Ping Dai ◽  
Nai Yun Yu

Film cooling effectiveness downstream and spanwise distribution of one row of converging slot-holes at the blade were investigated using a three-dimensional finite volume method and multi-block technique at the blowing ratio ranging from 0.5 to 2.0. Previous successful application of a two-layer turbulence model to cylindrical is extended to predict film cooling for the converging slot-hole geometry. Also, the influence of jet angle on film cooling effectiveness from converging slot-holes at the blade was studied. The results showed that the centerline effectiveness of converging slot-hole was going to be increased along with blowing ratio increasing. It was also shown that the uniform lateral spreading of the effectiveness with an enhancement of the intersection of the two slot-holes. It was found that cooling effectiveness for 25° was superior to other jet angle for any blowing ratios. Furthermore, the improvement realized by the small jet angle compared to the other jet angle holes was more important at the higher blowing ratio than it was at the lower one. Cooling effectiveness of 45° and 60° holes was declining along downstream of the holes, but it was improving over again at somewhere from downstream and then it was continuing decline. Cooling effectiveness of 60° holes presented a marked improvement compared to 45° holes at beyond downstream of the holes. Counter rotating vortex pairs at the exit of big jet angle holes were obvious and strong, but these vortexes have been weakened at the exit of small jet angle holes and results in a better coolant protection than that of the big jet angle holes.


Sign in / Sign up

Export Citation Format

Share Document