Simulation of Sealing Performance of Elastomeric O-Ring Gasket Including Metal Skeleton

2014 ◽  
Vol 556-562 ◽  
pp. 615-619
Author(s):  
Guo Liang Zhang ◽  
Zhi Bin Zeng

In the hydraulic and pneumatic equipments, the elastomeric O-ring gaskets are widely used to ensure their sealing. The sealing capability of an elastomeric O-ring gasket depends upon the contact stresses that develop between the O-ring and the surfaces with which it comes into contact. In order to increase the strength and service life of the general elastomeric O-ring gasket, this gasket including metal skeleton is gradually applied to the actual product in recent years. In spite of the sealing performance of the elastomeric O-ring gasket has been investigated in many literatures, few information of it is known about the elastomeric O-ring gasket including metal skeleton. If any gasket degrades or fails, the overall operation and performance of the production will be affected. This paper aims to study the contact stresses occurred on the metal skeleton seal structure under the various interference fits with three sectional forms (trapezoid cross section, square cross section and circular cross section). Finite element analysis is used to predict sealing performance of an installed metal skeleton seal, providing a normal force against the sealing surface. Results gained show that the contact stresses occurred on the metal skeleton seal is larger than it generated on the general elastomeric O-ring gasket. Furthermore, the metal skeleton seal possessed trapezoid cross section can produce the maximum contact stress, which will show the best sealing performance among three sectional forms.

Author(s):  
Dianyin Hu ◽  
Rongqiao Wang ◽  
Quanbin Ren ◽  
Jie Hong

First, this paper established the seal structural 2D axisymmetric model of a certain Solid Rocket Booster (SRB) and calculated the deformation and stresses at ignition through a large displacement, incompressible, contact finite element analysis. The results show that the maximum contact stress appears at the contact area and the maximum shear stress at groove notch. Then, some typical parameters of the seal structure which might have the impact on the sealing performance, such as the gap breadth, initial compressibility, fillets of the groove notch and bottom, groove width, were analyzed. We can find that the gap breadth and initial compressibility do great contributions to the maximum contact normal stress, and the groove notch and bottom fillets act upon the maximum shear stress obviously. In order to verify the validity of the 2D axisymmetric model, 3D structural finite element analysis of the structure was conducted, and the results indicate that in service, the upper flange is inclined relative to the nether flange, which seems to mean that the gap breadth can not be considered as a constant during the 2D axisymmetric analysis. However further calculations say that if using the minimum gap breadth gotten in 3D analysis as its constant gap value, the above 2D axisymmetric model can rationally take the place of 3D model to analyze the sealing performance. Finally, the failure modes & criteria of the O-ring seals based on the maximum contact normal stress and shear stress were determined to ensure the reliability of this structure.


2013 ◽  
Vol 721 ◽  
pp. 545-550
Author(s):  
Sai Wu ◽  
Jun Hai Zhao ◽  
Er Gang Xiong

Based on the finite element analysis software ANSYS/LS-DYNA, this paper numerically analyzed the dynamic performance of MTCCCs with different cross sections under blast load, followed by the study and comparison on the differences of the detonation wave propagation and failure modes between the columns in circular cross section and square cross section. The results show: The blast resistant performance of the circular component is more superior than the square component for its better aerodynamic shape that can greatly reduce the impact of the detonation wave on the column; The main difference of the failure modes between the circular and square cross-sectional components under blast load lies in the different failure mode of the outer steel tube. The simulation results in this paper can provide some references for the blast resisting design of MTCCCs.


Mechanika ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 327-334
Author(s):  
Yuan WANG ◽  
Qingchun WANG ◽  
Zehao SU

 Due to its excellent properties, elliptical cross-section helical spring has been widely used in automobile industry, such as valve spring, arc spring used in Dual Mass Flywheel and so on. Existing stiffness formulae of helical spring remain to be tested, and stiffness property of elliptical cross-section arc spring has been little studied. Hence, study on the stiffness of elliptical cross-section helical spring is significant in the development of elliptical cross-section helical spring. This paper proposes a method to study the stiffness property of elliptical cross-section helical spring that the experiment design method is adopted with finite element analysis. Firstly, the finite element analysis method was used to verify the cylindrical (circular cross-section and elliptical cross-section) springs. Then, the regression formula was designed and derived compared with the reference springs’ stiffness formulae by experimental design. Last, regression formula was verified with existing experiment data. The novelty in this paper is that simulation technology of arc spring was investigated and a stiffness regression equation of arc elliptical cross-section spring was obtained using orthogonal regression design, with significance in wide use of the arc elliptical cross-section helical spring promotion. 


2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110406
Author(s):  
Wentao Song ◽  
Weicheng Cui

A proper criterion to guide how to determine the cross-section diameter of non-standard large-sized O-rings used in deep-ocean pressure chambers (DOPCs) is absent. To design a large-sized O-ring only by scale-up could be a lack of persuasiveness, and it will probably cause the increase of cost. This paper gives a detailed study on the static sealing performance of O-rings by finite element analysis (FEA). The results show that the influence of the inside diameter of O-rings can be ignored, and the O-rings with a large cross-section diameter may not be applicable to the high-pressure DOPCs, but it can allow a larger sealing clearance to be used in the low-pressure DOPCs. The reference values of safe sealing pressure with different cross-section diameters and different sealing clearances are ascertained. An improved criterion to guide how to determine the cross-section diameter of non-standard large-sized O-rings used in DOPCs is proposed. The results obtained in this paper can provide a more convincing guideline for the O-ring sealing design not only in DOPCs but also in the similar pressure vessels.


2012 ◽  
Vol 152-154 ◽  
pp. 1774-1778 ◽  
Author(s):  
Wen Rui Wang ◽  
Zhi Hui Sun ◽  
Xiao Qiang Yan ◽  
Qi Jiang

Based on the performance of Vane hydraulic damp O-ring seal ,simulation about the O-ring seal was applied by nonlinear finite element analysis method. The factors influencing sealing performance are considered, such as initial compressibility, sealing materials. Applying the method, the seal structure was designed and optimized. At the same time, the sealing performance was improved, and the contract pressure was increased. The finite element analysis method can be effectively used to solve nonlinear material and sealing failure problem for the seal design, optimization and performance analysis, which provide a new approach and theoretical guidance to the rubber seal research. The seal material and compression ratio are both great influence on the sealing performance , which should be based on working conditions to select the appropriate sealing materials.


Author(s):  
Manish Kumar ◽  
Pronab Roy ◽  
Kallol Khan

From the recent literature, it is revealed that pipe bend geometry deviates from the circular cross-section due to pipe bending process for any bend angle, and this deviation in the cross-section is defined as the initial geometric imperfection. This paper focuses on the determination of collapse moment of different angled pipe bends incorporated with initial geometric imperfection subjected to in-plane closing and opening bending moments. The three-dimensional finite element analysis is accounted for geometric as well as material nonlinearities. Python scripting is implemented for modeling the pipe bends with initial geometry imperfection. The twice-elastic-slope method is adopted to determine the collapse moments. From the results, it is observed that initial imperfection has significant impact on the collapse moment of pipe bends. It can be concluded that the effect of initial imperfection decreases with the decrease in bend angle from 150∘ to 45∘. Based on the finite element results, a simple collapse moment equation is proposed to predict the collapse moment for more accurate cross-section of the different angled pipe bends.


2014 ◽  
Vol 986-987 ◽  
pp. 927-930
Author(s):  
Yi Zhu ◽  
Bo Li ◽  
Hao Wang ◽  
Kun Li

Put the finite element analysis of line tower coupling modeling to the collapse of a 110 kV line straight-line tower, study the effect of strong wind on transmission tower and wire. The results show that under the action of strong wind, the material specification selected by the part of the rods on the type of tower is lower, cross section is smaller, the principal material of tower will be instable and flexional under the compression, resulting in tower collapsed.


2021 ◽  
Author(s):  
Richárd Horváth ◽  
Vendel Barth ◽  
Viktor Gonda ◽  
Mihály Réger ◽  
Imre Felde

Abstract In this paper, we study the energy absorption of metamaterials composed of unit cells whose special geometry makes the cross-sectional area and the volume of the bodies generated from them constant (for the same enclosing box dimensions). After a parametric description of such special geometries, we analyzed by finite element analysis the deformation of the metamaterials we have designed during compression. We 3D printed the designed metamaterials from plastic to subject them to real compression. The results of the finite element analysis were compared with the real compaction results. Then, for each test specimen, we plotted its compaction curve. By fitting a polynomial to the compaction curves and integrating it (area under the curve), the energy absorption of the samples can be obtained. As a result of these investigations, we drew a conclusion about the relationship between energy absorption and cell number.


Sign in / Sign up

Export Citation Format

Share Document