Influences of Concrete Creep and Temperature Deformation on Vehilce Travelling across Bridge

2014 ◽  
Vol 556-562 ◽  
pp. 655-658 ◽  
Author(s):  
Xiao Ping Wang

When long-span pre-stressed concrete bridges are subjected to concrete creep and temperature load , bridge deck deformation will be aroused. Then the additional track irregularity will be generated. It brings about the result that the dynamic response of train-track-bridge system will be influenced. In this paper, with the train-track-bridge coupling vibration theory, a (90+180+90) m continuous beam-arch combination bridge located on a certain passenger line is analysised comparatively, by considering the effect of concrete creep and temperature deformation. The results show that, the track irregularity caused by the concrete creep and temperature deformation influence the wheel unloading rate and the vertical accelararion of the train so obviously with the speed increasing. It can be concluded that the track irregularity need to be considered, especially for high-speed trains.

2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Chao Chang ◽  
Liang Ling ◽  
Zhaoling Han ◽  
Kaiyun Wang ◽  
Wanming Zhai

Wheel hollow wear is a common form of wheel-surface damage in high-speed trains, which is of great concern and a potential threat to the service performance and safety of the high-speed railway system. At the same time, rail corridors in high-speed railways are extensively straightened through the addition of bridges. However, only few studies paid attention to the influence of wheel-profile wear on the train-track-bridge dynamic interaction. This paper reports a study of the high-speed train-track-bridge dynamic interactions under new and hollow worn wheel profiles. A nonlinear rigid-flexible coupled model of a Chinese high-speed train travelling on nonballasted tracks supported by a long-span continuous girder bridge is formulated. This modelling is based on the train-track-bridge interaction theory, the wheel-rail nonelliptical multipoint contact theory, and the modified Craig–Bampton modal synthesis method. The effects of wheel-rail nonlinearity caused by the wheel hollow wear are fully considered. The proposed model is applied to predict the vertical and lateral dynamic responses of the high-speed train-track-bridge system under new and worn wheel profiles, in which a high-speed train passing through a long-span continuous girder bridge at a speed of 350 km/h is considered. The numerical results show that the wheel hollow wear changes the geometric parameters of the wheel-rail contact and then deteriorates the train-track-bridge interactions. The worn wheels can increase the vibration response of the high-speed railway bridges.


Author(s):  
Hongye Gou ◽  
Wenhao Li ◽  
Siqing Zhou ◽  
Yi Bao ◽  
Tianqi Zhao ◽  
...  

The Lanzhou-Xinjiang High-speed Railway runs through a region of over 500[Formula: see text]km that is amenable to frequent winds. The strong wind and rainfall pose a great threat to the safe operation of high-speed trains. To tackle the aforementioned climate challenges, this paper investigates the dynamic response of the high-speed train-track-bridge coupling system under the simultaneous action of winds and rains for the safe operation of trains. Specifically, there are four main objectives: (1) to develop a finite element model to analyze the dynamic response of the train-track-bridge system in windy and raining conditions; (2) to investigate the aerodynamic loads posed to the train-track-bridge system by winds and rains; (3) to evaluate the effects of wind speed and rainfall intensity on the train-track-bridge system; and (4) to assess the safety of trains at different train speeds and under various wind-rain conditions. To this end, this paper first establishes a train-track-bridge model via ANSYS and SIMPACK co-simulation and the aerodynamics models of the high-speed train and bridge through FLUENT to form a safety analysis system for high-speed trains running on the bridge under the wind-rain conditions. Then, the response of the train-track-bridge system under different wind speeds and rainfall intensities is studied. The results show that the effects of winds and rains are coupled. The rule of variation for the train dynamic response with respect to various wind and rain conditions is established, with practical suggestions provided for control of the safe operation of high-speed trains.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Lizhong Jiang ◽  
Xiang Liu ◽  
Tuo Zhou ◽  
Ping Xiang ◽  
Yuanjun Chen ◽  
...  

A nonlinear train-track-bridge system (TTBS) considering the random track irregularity and mass of train is discussed. Based on the Karhunen–Loéve theory, the track irregularity is expressed and input into the TTBS, and the result of random response is calculated using the point estimation method. Two cases are used to compare and validate the applicability of the proposed method, which show that the proposed method has a high precision and efficiency. Then, taking a 7-span bridge and a high-speed train as an example, the calculation results of random response of the nonlinear and linear wheel-rail model are compared, and the results show that for the bridge and rail response, the nonlinear and linear models are almost the same. Finally, comparing the calculated probability distribution results with the test results, it shows that the method can be applied to the prediction of actual response range.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 431
Author(s):  
Junjie Ye ◽  
Hao Sun

In order to study the influence of an integration time step on dynamic calculation of a vehicle-track-bridge under high-speed railway, a vehicle-track-bridge (VTB) coupled model is established. The influence of the integration time step on calculation accuracy and calculation stability under different speeds or different track regularity states is studied. The influence of the track irregularity on the integration time step is further analyzed by using the spectral characteristic of sensitive wavelength. According to the results, the disparity among the effect of the integration time step on the calculation accuracy of the VTB coupled model at different speeds is very small. Higher speed requires a smaller integration time step to keep the calculation results stable. The effect of the integration time step on the calculation stability of the maximum vertical acceleration of each component at different speeds is somewhat different, and the mechanism of the effect of the integration time step on the calculation stability of the vehicle-track-bridge coupled system is that corresponding displacement at the integration time step is different. The calculation deviation of the maximum vertical acceleration of the car body, wheel-sets and bridge under the track short wave irregularity state are greatly increased compared with that without track irregularity. The maximum vertical acceleration of wheel-sets, rails, track slabs and the bridge under the track short wave irregularity state all show a significant declining trend. The larger the vibration frequency is, the smaller the range of integration time step is for dynamic calculation.


Author(s):  
Yulin Feng ◽  
Yu Hou ◽  
Lizhong Jiang ◽  
Wangbao Zhou ◽  
Jian Yu ◽  
...  

The track irregularity spectrum of longitudinally connected ballastless track (LCBT)-bridge systems of high-speed railway was proposed in this paper. First, a simulation model of an LCBT-continuous girder bridge was established by considering the influences of approach bridges and subgrade with track structure. Further, a large number of sample analyses were carried out by taking into account the uncertainty of LCBT-bridge systems and stochastic behaviors of ground motions based on the simulation model. The damage laws of residual deformation of track-bridge system after earthquake actions were studied. Then, an interlayer deformation coordination relationship (IDCR) considering the track irregularity caused by earthquake-induced damage of bearings was developed, and the superposed track irregularity samples were obtained. Finally, by using the improved Blackman–Turkey method and Levenberg–Marquardt algorithm, the LCBT irregularity spectrum, track irregularity spectrogram, track irregularity limit spectrum, and a fitting formula for the track irregularity spectrum on a bridge after the action of earthquakes were obtained. Results obtained from the fitting formula and IDCR were compared, and they indicated that tracks undergone significant high-frequency irregularity diseases after the earthquake action. It was found that the track irregularity spectrum could be roughly divided into three ranges: high-, medium- and low-frequency wavebands. Consequently, this led to an application of a three-segment power function for the fitting of the track irregularity spectrum after the earthquake action. The track irregularity spectrum after the action of earthquakes provides an important theoretical basis for the establishment of seismic design methods for high-speed railway bridges based on the traffic safety performance.


Volume 2 ◽  
2004 ◽  
Author(s):  
M. H. Kargarnovin ◽  
D. Younesian ◽  
D. J. Thompson ◽  
C. J. C. Jones

The ride comfort of high-speed trains passing over railway bridges is studied in this paper. The effects of some nonlinear parameters in a carriage-track-bridge system are investigated such as the load-stiffening characteristics of the rail-pad and the ballast, rubber elements in the primary and secondary suspensions systems. The influence of the track irregularity and train speed on two comfort indicators, namely Sperling’s comfort index and the maximum acceleration level, are also studied. Timoshenko beam theory is used for modelling the rail and bridge and two layers of parallel damped springs in conjunction with a layer of mass are used to model the rail-pads, sleepers and ballast. A randomly irregular vertical track profile is modelled, characterised by a power spectral density (PSD). The ‘roughness’ is generated for three classes of tracks. Nonlinear Hertz theory is used for modelling the wheel-rail contact.


2013 ◽  
Vol 1 (1-2) ◽  
pp. 3-24 ◽  
Author(s):  
Wanming Zhai ◽  
He Xia ◽  
Chengbiao Cai ◽  
Mangmang Gao ◽  
Xiaozhen Li ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaohui Zhang ◽  
Yao Shan ◽  
Xinwen Yang

A model based on the theory of train-track-bridge coupling dynamics is built in the article to investigate how high-speed railway bridge pier differential settlement can affect various railway performance-related criteria. The performance of the model compares favorably with that of a 3D finite element model and train-track-bridge numerical model. The analysis of the study demonstrates that all the dynamic response for a span of 24 m is slightly larger than that for a span of 32 m. The wheel unloading rate increases with pier differential settlement for all of the calculation conditions considered, and its maximum value of 0.695 is well below the allowable limit. Meanwhile, the vertical acceleration increases with pier differential settlement and train speed, respectively, and the values for a pier differential settlement of 10 mm and speed of 350 km/h exceed the maximum allowable limit stipulated in the Chinese standards. On this basis, a speed limit for the exceeding pier differential settlement is determined for comfort consideration. Fasteners that had an initial tensile force due to pier differential settlement experience both compressive and tensile forces as the train passes through and are likely to have a lower service life than those which solely experience compressive forces.


Sign in / Sign up

Export Citation Format

Share Document