scholarly journals Combination of Adaptive Enlargement and Reduction in the Search Neighbourhood in the Bees Algorithm

2014 ◽  
Vol 564 ◽  
pp. 614-618 ◽  
Author(s):  
A.S. Azfanizam ◽  
D.T. Pham ◽  
A.A. Faieza

The Bees Algorithm, a heuristic optimisation procedure that mimics bees foraging behaviour, is becoming more popular among swarm intelligence researchers. The algorithm involves neighbourhood and global search and is able to find promising solutions to complex multimodal optimisation problems. The purpose of neighbourhood search is to intensify the search effort around promising solutions, while global search is to enable avoidance of local optima. Despite numerous studies aimed at enhancing the Bees Algorithm, there have not been many attempts at studying neighbourhood search. In this work, the combination of adaptive enlargement and reduction of the search neighbourhood is presented. Two engineering design problems with constraints which were the pressure vessel and speed reducer were selected to demonstrate the performance of the modified algorithm. The experimental results obtained showed that this combination is beneficial to the proposed algorithm.

2022 ◽  
Vol 19 (1) ◽  
pp. 473-512
Author(s):  
Rong Zheng ◽  
◽  
Heming Jia ◽  
Laith Abualigah ◽  
Qingxin Liu ◽  
...  

<abstract> <p>Arithmetic optimization algorithm (AOA) is a newly proposed meta-heuristic method which is inspired by the arithmetic operators in mathematics. However, the AOA has the weaknesses of insufficient exploration capability and is likely to fall into local optima. To improve the searching quality of original AOA, this paper presents an improved AOA (IAOA) integrated with proposed forced switching mechanism (FSM). The enhanced algorithm uses the random math optimizer probability (<italic>RMOP</italic>) to increase the population diversity for better global search. And then the forced switching mechanism is introduced into the AOA to help the search agents jump out of the local optima. When the search agents cannot find better positions within a certain number of iterations, the proposed FSM will make them conduct the exploratory behavior. Thus the cases of being trapped into local optima can be avoided effectively. The proposed IAOA is extensively tested by twenty-three classical benchmark functions and ten CEC2020 test functions and compared with the AOA and other well-known optimization algorithms. The experimental results show that the proposed algorithm is superior to other comparative algorithms on most of the test functions. Furthermore, the test results of two training problems of multi-layer perceptron (MLP) and three classical engineering design problems also indicate that the proposed IAOA is highly effective when dealing with real-world problems.</p> </abstract>


Author(s):  
ZD Zhou ◽  
YQ Xie ◽  
DT Pham ◽  
S Kamsani ◽  
M Castellani

The aim of multimodal optimisation is to find significant optima of a multimodal objective function including its global optimum. Many real-world applications are multimodal optimisation problems requiring multiple optimal solutions. The Bees Algorithm is a global optimisation procedure inspired by the foraging behaviour of honeybees. In this paper, several procedures are introduced to enhance the algorithm’s capability to find multiple optima in multimodal optimisation problems. In the proposed Bees Algorithm for multimodal optimisation, dynamic colony size is permitted to automatically adapt the search effort to different objective functions. A local search approach called balanced search technique is also proposed to speed up the algorithm. In addition, two procedures of radius estimation and optima elitism are added, to respectively enhance the Bees Algorithm’s ability to locate unevenly distributed optima, and eliminate insignificant local optima. The performance of the modified Bees Algorithm is evaluated on well-known benchmark problems, and the results are compared with those obtained by several other state-of-the-art algorithms. The results indicate that the proposed algorithm inherits excellent properties from the standard Bees Algorithm, obtaining notable efficiency for solving multimodal optimisation problems due to the introduced modifications.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1551
Author(s):  
Shuang Wang ◽  
Heming Jia ◽  
Laith Abualigah ◽  
Qingxin Liu ◽  
Rong Zheng

Aquila Optimizer (AO) and Harris Hawks Optimizer (HHO) are recently proposed meta-heuristic optimization algorithms. AO possesses strong global exploration capability but insufficient local exploitation ability. However, the exploitation phase of HHO is pretty good, while the exploration capability is far from satisfactory. Considering the characteristics of these two algorithms, an improved hybrid AO and HHO combined with a nonlinear escaping energy parameter and random opposition-based learning strategy is proposed, namely IHAOHHO, to improve the searching performance in this paper. Firstly, combining the salient features of AO and HHO retains valuable exploration and exploitation capabilities. In the second place, random opposition-based learning (ROBL) is added in the exploitation phase to improve local optima avoidance. Finally, the nonlinear escaping energy parameter is utilized better to balance the exploration and exploitation phases of IHAOHHO. These two strategies effectively enhance the exploration and exploitation of the proposed algorithm. To verify the optimization performance, IHAOHHO is comprehensively analyzed on 23 standard benchmark functions. Moreover, the practicability of IHAOHHO is also highlighted by four industrial engineering design problems. Compared with the original AO and HHO and five state-of-the-art algorithms, the results show that IHAOHHO has strong superior performance and promising prospects.


Author(s):  
D T Pham ◽  
M Castellani

The Bees Algorithm models the foraging behaviour of honeybees in order to solve optimization problems. The algorithm performs a kind of exploitative neighbourhood search combined with random explorative search. This article describes the Bees Algorithm in its basic formulation, and two recently introduced procedures that increase the speed and accuracy of the search. A critical review of the related swarm intelligence literature is presented. The effectiveness of the proposed method is compared to that of three state-of-the-art biologically inspired search methods. The four algorithms were tested on a range of well-known benchmark function optimization problems of different degrees of complexity. The experimental results proved the reliability of the bees foraging metaphor. The Bees Algorithm performed optimally, or near optimally, in almost all the tests. Compared to the three control algorithms, the Bees Algorithm was highly competitive in terms of learning accuracy and speed. The experimental tests helped also to shed further light on the search mechanisms of the Bees Algorithm and the three control methods, and to highlight their differences, strengths, and weaknesses.


Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1049 ◽  
Author(s):  
Guocheng Li ◽  
Fei Shuang ◽  
Pan Zhao ◽  
Chengyi Le

Engineering design optimization in real life is a challenging global optimization problem, and many meta-heuristic algorithms have been proposed to obtain the global best solutions. An excellent meta-heuristic algorithm has two symmetric search capabilities: local search and global search. In this paper, an improved Butterfly Optimization Algorithm (BOA) is developed by embedding the cross-entropy (CE) method into the original BOA. Based on a co-evolution technique, this new method achieves a proper balance between exploration and exploitation to enhance its global search capability, and effectively avoid it falling into a local optimum. The performance of the proposed approach was evaluated on 19 well-known benchmark test functions and three classical engineering design problems. The results of the test functions show that the proposed algorithm can provide very competitive results in terms of improved exploration, local optima avoidance, exploitation, and convergence rate. The results of the engineering problems prove that the new approach is applicable to challenging problems with constrained and unknown search spaces.


2021 ◽  
Vol 18 (6) ◽  
pp. 7076-7109
Author(s):  
Shuang Wang ◽  
◽  
Heming Jia ◽  
Qingxin Liu ◽  
Rong Zheng ◽  
...  

<abstract> <p>This paper introduces an improved hybrid Aquila Optimizer (AO) and Harris Hawks Optimization (HHO) algorithm, namely IHAOHHO, to enhance the searching performance for global optimization problems. In the IHAOHHO, valuable exploration and exploitation capabilities of AO and HHO are retained firstly, and then representative-based hunting (RH) and opposition-based learning (OBL) strategies are added in the exploration and exploitation phases to effectively improve the diversity of search space and local optima avoidance capability of the algorithm, respectively. To verify the optimization performance and the practicability, the proposed algorithm is comprehensively analyzed on standard and CEC2017 benchmark functions and three engineering design problems. The experimental results show that the proposed IHAOHHO has more superior global search performance and faster convergence speed compared to the basic AO and HHO and selected state-of-the-art meta-heuristic algorithms.</p> </abstract>


2009 ◽  
Author(s):  
Souhail Dhouib ◽  
Aïda Kharrat ◽  
Habib Chabchoub ◽  
Lotfi Beji ◽  
Samir Otmane ◽  
...  

Author(s):  
Afshin Ghanbarzadeh

This paper presents an application of the Bees Algorithm (BA) to the optimisation of weights within neural networks for wood defect detection. This novel population-based search algorithm mimics the natural foraging behaviour of swarms of bees. In its basic version, the algorithm performs a kind of neighbourhood search combined with random search. Following a brief description of the algorithm, the paper gives the results obtained for the wood defect identification problem demonstrating the efficiency and robustness of the new algorithm.


2017 ◽  
Vol 5 (2) ◽  
pp. 249-273 ◽  
Author(s):  
Rizk M. Rizk-Allah

Abstract This paper presents a new algorithm based on hybridizing the sine cosine algorithm (SCA) with a multi-orthogonal search strategy (MOSS), named multi-orthogonal sine cosine algorithm (MOSCA), for solving engineering design problems. The proposed MOSCA integrates the advantages of the SCA and MOSS to eliminate SCA's disadvantages, like unbalanced exploitation and the trapping in local optima. The proposed MOSCA works in two stages, firstly, the SCA phase starts the search process to enhance exploration capability. Secondly, the MOSS phase starts its search from SCA found so far to boost the exploitation tendencies. In this regard, MOSS phase can assist SCA phase to search based on deeper exploration/exploitation patterns as an alternative. Therefore, the MOSCA can be more robust, statistically sound, and quickly convergent. The performance of the MOSCA algorithm is investigated by applying it on eighteen benchmark problems and four engineering design problems. The experimental results indicate that MOSCA is a promising algorithm and outperforms the other algorithms in most cases. Highlights MOSCA is presented to solve design and manufacturing optimization problems efficiently. MOSCA is based on two phases namely, sine cosine algorithm (SCA) and multi-orthogonal search strategy (MOSS). The integrated MOSCA enhances exploration tendency and exploitation capability. The MOSCA can be more robust, statistically sound, and quickly convergent. New approach produced successful results compared to the literature studies.


Author(s):  
Sankalap Arora ◽  
Priyanka Anand

Butterfly Optimization Algorithm (BOA) is a novel meta-heuristic algorithm inspired by the food foraging behavior of the butterflies. The performance of BOA critically depends upon the probability parameter which decides whether the butterfly has to move towards the best butterfly of the population or perform a random search. Therefore, in order to increase the potential of the BOA, which focuses on exploration phase in the initial stages and on exploitation in the later stages of the optimization, learning automata have been embedded in BOA in which a learning automaton takes the role of configuring the behavior of a butterfly in order to create a proper balance between the process of global and local search. The introduction of learning automata accelerates the global convergence speed to the true global optimum while preserving the main feature of the basic BOA. In order to validate the effectiveness of the proposed algorithm, it is evaluated on 17 benchmark test functions and 3 classical engineering design problems with different characteristics, having real-world applications. The simulation results demonstrate that the introduction of learning automata in BOA has significantly boosted the performance of BOA in terms of achievement of true global optimum and avoidance of local optima entrapment.


Sign in / Sign up

Export Citation Format

Share Document