A Practical Approach to Provide Security in IEEE 802.15.4 Wireless Sensor Network

2014 ◽  
Vol 568-570 ◽  
pp. 503-507 ◽  
Author(s):  
Hui Lin

During last years, IEEE 802.15.4 has been asserting itself as one of the most promising standards for Wireless Sensor Network. It includes a security sublayer, which provides a number of operations and procedures aimed at securing network communications. But providing security features and power consumption together face a trade-off. In spite of so many research works discussing IEEE 802.15.4 security service, so far not so many focus on their implementation and performance. This paper discusses some security aspects of IEEE 802.15.4, and presents a practical approach to secure point to point link between wireless sensor nodes in details, supporting all the security suites of the standard. The results demonstrated that our approach achieved significantly lower power consumption and higher performance in security.

Author(s):  
Ronghua Yu ◽  
Qixin Zhou ◽  
Yechun Wang ◽  
Chao You

Researchers have been focused on the influences of flowing fluid on the corrosion of bare metals, but there is little emphasis on the degradation of metal-protective coating. Evaluating the metal-protective coating usually uses the Electrochemical Impedance Spectroscopy (EIS) method. EIS is a technique used for evaluating coating permeability or barrier performance based on the electrical impedance of coating. This paper presents a new impedance-based wireless sensor network for metal-protective coating evaluation. This wireless sensor network consists of two parts: impedance-based wireless sensor nodes and a wireless data base that are equipped with a network analyzer (AD5933) and a RF transceiver (CC1111/CC1110). In the experiment, there are three coating panels immersed in flowing deionized water (DI water) and one coating panel immersed in stationary DI water. Experimental results demonstrate that the proposed wireless sensor network is capable to evaluate the coating degrading.


2013 ◽  
Vol 347-350 ◽  
pp. 1920-1923
Author(s):  
Yu Jia Sun ◽  
Xiao Ming Wang ◽  
Fang Xiu Jia ◽  
Ji Yan Yu

The characteristics and the design factors of wireless sensor network node are talked in this article. According to the design factors of wireless sensor network, this article will mainly point out the design of wireless sensor nodes based a Cortex-M3 Microcontroller STM32F103RE chip. And the wireless communication module is designed with a CC2430 chip. Our wireless sensor node has good performance in our test.


Author(s):  
N. N. N. Abd. Malik ◽  
M. Esa ◽  
S. K. S. Yusof ◽  
S. A. Hamzah ◽  
M. K. H. Ismail

This chapter presents an intelligent method of optimising the radiation beam of wireless sensor nodes in Wireless Sensor Network (WSN). Each node has the feature of a monopole antenna. The optimisation involves selection of nodes to be organised as close as possible to a uniform linear array (ULA) in order to minimise the position errors, which will improve the radiation beam reconfiguring performance. Instead of utilising random beamforming, which needs a large number of sensor nodes to interact with each other and form a narrow radiation beam, the developed optimisation algorithm is emphasized to only a selected number of sensor nodes which can construct a linear array. Thus, the method utilises radiation beam reconfiguration technique to intelligently establish a communication link in a WSN.


2020 ◽  
pp. 857-880
Author(s):  
Madhuri Rao ◽  
Narendra Kumar Kamila

Wireless Sensor nodes are being employed in various applications like in traffic control, battlefield, and habitat monitoring, emergency rescue, aerospace systems, healthcare systems and in intruder tracking recently. Tracking techniques differ in almost every application of Wireless Sensor Network (WSN), as WSN is itself application specific. The chapter aims to present the current state of art of the tracking techniques. It throws light on how mathematically target tracking is perceived and then explains tracking schemes and routing techniques based on tracking techniques. An insight of how to code localization techniques in matlab simulation tool is provided and analyzed. It further draws the attention of the readers to types of tracking scenarios. Some of the well established tracking techniques are also surveyed for the reader's benefit. The chapter presents with open research challenges that need to be addressed along with target tracking in wireless sensor networks.


Author(s):  
Ronghua Yu ◽  
Qixin Zhou ◽  
Yechun Wang ◽  
Chao You

Researchers have been focused on the influences of flowing fluid on the corrosion of bare metals, but there is little emphasis on the degradation of metal-protective coating. Evaluating the metal-protective coating usually uses the Electrochemical Impedance Spectroscopy (EIS) method. EIS is a technique used for evaluating coating permeability or barrier performance based on the electrical impedance of coating. This paper presents a new impedance-based wireless sensor network for metal-protective coating evaluation. This wireless sensor network consists of two parts: impedance-based wireless sensor nodes and a wireless data base that are equipped with a network analyzer (AD5933) and a RF transceiver (CC1111/CC1110). In the experiment, there are three coating panels immersed in flowing deionized water (DI water) and one coating panel immersed in stationary DI water. Experimental results demonstrate that the proposed wireless sensor network is capable to evaluate the coating degrading.


2014 ◽  
Vol 26 (5) ◽  
pp. 616-621 ◽  
Author(s):  
Ningning Wu ◽  
◽  
Juwei Zhang ◽  
Qiangyi Li ◽  
Shiwei Li ◽  
...  

<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00260005/10.jpg"" width=""200"" /> Nodes moving direction in our scheme</div> Wireless sensor network nodes deployment optimization problem is studied and wireless sensor nodes deployment determines its capability and lifetime. The nodes deployment scheme based on the perceived probability model aiming at wireless sensor network nodes which are randomly deployed is designed. The scheme can be used to calculate the perceived probability in the area around wireless sensor network nodes and move the wireless sensor nodes to the low perceived probability area according to the current energy of the wireless sensor node. The simulation results show that this deployment scheme achieves the goal of the nodes reasonable distribution by improving the network coverage and reducing the nodes movement distance and energy consumption. </span>


2020 ◽  
Vol 3 (4) ◽  
pp. 259-270
Author(s):  
Nhan Chi Nguyen ◽  
Hoang Huy Nguyen ◽  
Tuan Ngoc Pham

This paper presents the design of wireless sensor network (WSN) based on low-power wide area network technology for high-tech agriculture. This WSN allows the farmer to collect data such as air temperature, air humidity, soil moisture. The WSN system consists of components: 02 wireless sensor nodes, 01 gateway, 01 cloud server and smartphone app. This WSN tested for data transmission in two zones: zone 1 (dense urban environments) at a distance of 500m and zone 2 (urban environments - less obstacles) at a distance of 1,500m and 1,700m. The data collected at different times of the day and updated every 15 minutes. The results show that the wireless sensor network system operates stably, data constantly updated to LoRa Server and there was not data packet loss. The power consumption of sensor node and gateway determined in three operating modes: transmitting, receiving, turn-off. This shows the advantages of LoRa technology in the development of wireless sensor network which is the distance of data transmission distance and low power consumption. Besides this WSN also tested in the net house of aquaponics of the Research Center for High-tech Application in Agriculture (RCHAA), University of Science, Vietnam National University-HCM. The results show that the WSN system is working reliably and promising which brings significantly benefits to smart agriculture as aquaponics, clean vegetable farms, aquaculture farms…


2015 ◽  
Vol 15 (3) ◽  
pp. 584
Author(s):  
Raja Waseem Anwar ◽  
Majid Bakhtiari ◽  
Anazida Zainal ◽  
Kashif Naseer Qureshi

Wireless sensor network is a tremendous emerging technology provides communication services for environmental monitoring and target tracking for mass public and military. With increasing of this smart network popularity sensor network faced various challenges and threats. The inclusion of wireless sensor nodes also incurs different types of security threats in network. Mostly networks are using shared key approaches to make less communication overhead, but still network compromise with replay impersonation and compromise attacks. The existing proposed schemes are not fully addressed other network resources such as energy and speed, etc.  The intent of this paper is to provide a comprehensive security requirement, detail about security attacks in network and discuss the existing security schemes.


In part years wireless sensor networks (WSNs) have shown great improvement and also have become trusted areas in research. A wireless sensor networks (WSNs) is made up of many wireless sensor nodes that provides the source field and sink of a wireless network. The ability to sense the surrounding nodes, computing and connecting to other nodes wirelessly provide the wireless sensor network s(WSNs).the application of WSN is seen in many areas like military application, tracking, monitoring remote environment, surveillance, healthcare department and so on. Because of wide application the challenges for better developed technology and improvement have increased .this paper discuss some of the recent and future trends of Wireless sensor network. [1],[ 3],[5]


Author(s):  
Madhuri Rao ◽  
Narendra Kumar Kamila

Wireless Sensor nodes are being employed in various applications like in traffic control, battlefield, and habitat monitoring, emergency rescue, aerospace systems, healthcare systems and in intruder tracking recently. Tracking techniques differ in almost every application of Wireless Sensor Network (WSN), as WSN is itself application specific. The chapter aims to present the current state of art of the tracking techniques. It throws light on how mathematically target tracking is perceived and then explains tracking schemes and routing techniques based on tracking techniques. An insight of how to code localization techniques in matlab simulation tool is provided and analyzed. It further draws the attention of the readers to types of tracking scenarios. Some of the well established tracking techniques are also surveyed for the reader's benefit. The chapter presents with open research challenges that need to be addressed along with target tracking in wireless sensor networks.


Sign in / Sign up

Export Citation Format

Share Document