Linear Stability Analysis in a Compressible Axisymmetric Swirling Jet

2014 ◽  
Vol 574 ◽  
pp. 15-20
Author(s):  
Zhi Wei Guo ◽  
Si Min Shen ◽  
Wei Min Feng ◽  
Bo Fu Wang

Temporal linear stability of a compressible axisymmetric swirling jet is investigated. The present work extends a previous analysis to include the effects of swirl number on the stability of flow dynamics. Results obtained show that the optimal growth rate of disturbance for azimuthal wavenumber n = -1 is larger than that for n = -2 while the corresponding frequencies for both n increases as axial wavenumber increases. As swirl number q increases, the optimal growth rate of disturbance also increases. What is more, there is an optimal swirl number for small axial wavenumbers, which is different from the situation for medium and large axial wavenumbers.

Author(s):  
Cody S. Dowd ◽  
Joseph W. Meadows

Lean premixed (LPM) combustion systems are susceptible to thermoacoustic instability, which occurs when acoustic pressure oscillations are in phase with the unsteady heat release rates. Porous media has inherent acoustic damping properties, and has been shown to mitigate thermoacoustic instability; however, theoretical models for predicting thermoacoustic instability with porous media do not exist. In the present study, a 1-D model has been developed for the linear stability analysis of the longitudinal modes for a series of constant cross-sectional area ducts with porous media using a n-Tau flame transfer function. By studying the linear regime, the prediction of acoustic growth rates and subsequently the stability of the system is possible. A transfer matrix approach is used to solve for acoustic perturbations of pressure and velocity, stability growth rate, and frequency shift without and with porous media. The Galerkin approximation is used to approximate the stability growth rate and frequency shift, and it is compared to the numerical solution of the governing equations. Porous media is modeled using the following properties: porosity, flow resistivity, effective bulk modulus, and structure factor. The properties of porous media are systematically varied to determine the impact on the eigenfrequencies and stability growth rates. Porous media is shown to increase the stability domain for a range of time delays (Tau) compared to similar cases without porous media.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Cody S. Dowd ◽  
Joseph W. Meadows

Lean premixed (LPM) combustion systems are susceptible to thermoacoustic instability, which occurs when acoustic pressure oscillations are in phase with the unsteady heat release rates. Porous media has inherent acoustic damping properties and has been shown to mitigate thermoacoustic instability; however, theoretical models for predicting thermoacoustic instability with porous media do not exist. In the present study, a one-dimensional (1D) model has been developed for the linear stability analysis of the longitudinal modes for a series of constant cross-sectional area ducts with porous media using a n-Tau flame transfer function (FTF). By studying the linear regime, the prediction of acoustic growth rates and subsequently the stability of the system is possible. A transfer matrix approach is used to solve for acoustic perturbations of pressure and velocity, stability growth rate, and frequency shift without and with porous media. The Galerkin approximation is used to approximate the stability growth rate and frequency shift, and it is compared to the numerical solution of the governing equations. Porous media is modeled using the following properties: porosity, flow resistivity, effective bulk modulus, and structure factor. The properties of porous media are systematically varied to determine the impact on the eigenfrequencies and stability growth rates. Porous media is shown to increase the stability domain for a range of time delays (Tau) compared to similar cases without porous media.


1996 ◽  
Vol 308 ◽  
pp. 31-62 ◽  
Author(s):  
Chi-Hwa Wang ◽  
R. Jackson ◽  
S. Sundaresan

This paper presents a linear stability analysis of a rapidly sheared layer of granular material confined between two parallel solid plates. The form of the steady base-state solution depends on the nature of the interaction between the material and the bounding plates and three cases are considered, in which the boundaries act as sources or sinks of pseudo-thermal energy, or merely confine the material while leaving the velocity profile linear, as in unbounded shear. The stability analysis is conventional, though complicated, and the results are similar in all cases. For given physical properties of the particles and the bounding plates it is found that the condition of marginal stability depends only on the separation between the plates and the mean bulk density of the particulate material contained between them. The system is stable when the thickness of the layer is sufficiently small, but if the thickness is increased it becomes unstable, and initially the fastest growing mode is analogous to modes of the corresponding unbounded problem. However, with a further increase in thickness a new mode becomes dominant and this is of an unusual type, with no analogue in the case of unbounded shear. The growth rate of this mode passes through a maximum at a certain value of the thickness of the sheared layer, at which point it grows much faster than any mode that could be shared with the unbounded problem. The growth rate of the dominant mode also depends on the bulk density of the material, and is greatest when this is neither very large nor very small.


2001 ◽  
Author(s):  
Davide Valtorta ◽  
Khaled E. Zaazaa ◽  
Ahmed A. Shabana ◽  
Jalil R. Sany

Abstract The lateral stability of railroad vehicles travelling on tangent tracks is one of the important problems that has been the subject of extensive research since the nineteenth century. Early detailed studies of this problem in the twentieth century are the work of Carter and Rocard on the stability of locomotives. The linear theory for the lateral stability analysis has been extensively used in the past and can give good results under certain operating conditions. In this paper, the results obtained using a linear stability analysis are compared with the results obtained using a general nonlinear multibody methodology. In the linear stability analysis, the sources of the instability are investigated using Liapunov’s linear theory and the eigenvalue analysis for a simple wheelset model on a tangent track. The effects of the stiffness of the primary and secondary suspensions on the stability results are investigated. The results obtained for the simple model using the linear approach are compared with the results obtained using a new nonlinear multibody based constrained wheel/rail contact formulation. This comparative numerical study can be used to validate the use of the constrained wheel/rail contact formulation in the study of lateral stability. Similar studies can be used in the future to define the limitations of the linear theory under general operating conditions.


2019 ◽  
Vol 71 (1) ◽  
pp. 31-39
Author(s):  
Subrata Das ◽  
Sisir Kumar Guha

Purpose The purpose of this paper is to investigate the effect of turbulence on the stability characteristics of finite hydrodynamic journal bearing lubricated with micropolar fluid. Design/methodology/approach The non-dimensional transient Reynolds equation has been solved to obtain the non-dimensional pressure field which in turn used to obtain the load carrying capacity of the bearing. The second-order equations of motion applicable for journal bearing system have been solved using fourth-order Runge–Kutta method to obtain the stability characteristics. Findings It has been observed that turbulence has adverse effect on stability and the whirl ratio at laminar flow condition has the lowest value. Practical implications The paper provides the stability characteristics of the finite journal bearing lubricated with micropolar fluid operating in turbulent regime which is very common in practical applications. Originality/value Non-linear stability analysis of micropolar fluid lubricated journal bearing operating in turbulent regime has not been reported in literatures so far. This paper is an effort to address the problem of non-linear stability of journal bearings under micropolar lubrication with turbulent effect. The results obtained provide useful information for designing the journal bearing system for high speed applications.


2013 ◽  
Vol 721 ◽  
pp. 268-294 ◽  
Author(s):  
L. Talon ◽  
N. Goyal ◽  
E. Meiburg

AbstractA computational investigation of variable density and viscosity, miscible displacements in horizontal Hele-Shaw cells is presented. As a first step, two-dimensional base states are obtained by means of simulations of the Stokes equations, which are nonlinear due to the dependence of the viscosity on the local concentration. Here, the vertical position of the displacement front is seen to reach a quasisteady equilibrium value, reflecting a balance between viscous and gravitational forces. These base states allow for two instability modes: first, there is the familiar tip instability driven by the unfavourable viscosity contrast of the displacement, which is modulated by the presence of density variations in the gravitational field; second, a gravitational instability occurs at the unstably stratified horizontal interface along the side of the finger. Both of these instability modes are investigated by means of a linear stability analysis. The gravitational mode along the side of the finger is characterized by a wavelength of about one half to one full gap width. It becomes more unstable as the gravity parameter increases, even though the interface is shifted closer to the wall. The growth rate is largest far behind the finger tip, where the interface is both thicker, and located closer to the wall, than near the finger tip. The competing influences of interface thickness and wall proximity are clarified by means of a parametric stability analysis. The tip instability mode represents a gravity-modulated version of the neutrally buoyant mode. The analysis shows that in the presence of density stratification its growth rate increases, while the dominant wavelength decreases. This overall destabilizing effect of gravity is due to the additional terms appearing in the stability equations, which outweigh the stabilizing effects of gravity onto the base state.


2017 ◽  
Vol 822 ◽  
pp. 813-847 ◽  
Author(s):  
Azan M. Sapardi ◽  
Wisam K. Hussam ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to characterise the breakdown of the steady two-dimensional solution in the flow around a 180-degree sharp bend to infinitesimal three-dimensional disturbances using a linear stability analysis. The stability analysis predicts that three-dimensional transition is via a synchronous instability of the steady flows. A highly accurate global linear stability analysis of the flow was conducted with Reynolds number $\mathit{Re}<1150$ and bend opening ratio (ratio of bend width to inlet height) $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 5$. This range of $\mathit{Re}$ and $\unicode[STIX]{x1D6FD}$ captures both steady-state two-dimensional flow solutions and the inception of unsteady two-dimensional flow. For $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 1$, the two-dimensional base flow transitions from steady to unsteady at higher Reynolds number as $\unicode[STIX]{x1D6FD}$ increases. The stability analysis shows that at the onset of instability, the base flow becomes three-dimensionally unstable in two different modes, namely a spanwise oscillating mode for $\unicode[STIX]{x1D6FD}=0.2$ and a spanwise synchronous mode for $\unicode[STIX]{x1D6FD}\geqslant 0.3$. The critical Reynolds number and the spanwise wavelength of perturbations increase as $\unicode[STIX]{x1D6FD}$ increases. For $1<\unicode[STIX]{x1D6FD}\leqslant 2$ both the critical Reynolds number for onset of unsteadiness and the spanwise wavelength decrease as $\unicode[STIX]{x1D6FD}$ increases. Finally, for $2<\unicode[STIX]{x1D6FD}\leqslant 5$, the critical Reynolds number and spanwise wavelength remain almost constant. The linear stability analysis also shows that the base flow becomes unstable to different three-dimensional modes depending on the opening ratio. The modes are found to be localised near the reattachment point of the first recirculation bubble.


Sign in / Sign up

Export Citation Format

Share Document