Experimental Investigation on the Segregation of Landslide Dam Materials

2014 ◽  
Vol 580-583 ◽  
pp. 2103-2107
Author(s):  
Ming Zhang ◽  
Fei Wang ◽  
Gu Jie Mouse ◽  
Wei Tao Luo ◽  
Hong Wu Zhang ◽  
...  

Large landslides usually dam lakes that may easily fail and then result in catastrophic flood threatening the population downstream. The grain size composition within landslide dams is considered as a vital factor that impacts the timing of failure and the resulting magnitude of flood. Therefore, experiments were conducted to investigate the features of size distribution in accumulation bodies. The results indicate that the grain size distribution varies in different parts of the deposits. The inverse grading phenomenon can be observed. Grains in the front of the deposit are coarser, while grains in the rear are finer. For the front of the deposit, the grains in the middle are finer than the other two sides. The grain size segregation is believed to be the governing mechanism that contributes to this special distribution. The speculations of the grain size distribution inside the landslide dam are presented.

2021 ◽  
Author(s):  
Odin Marc ◽  
Jens M. Turowski ◽  
Patrick Meunier

Abstract. The size of grains delivered to river by hillslopes processes is thought to be a key factor to better understand sediment transport, long-term erosion as well as sedimentary archives. Recently, models have been developed for the grain size distribution produced in soil, but they may not apply to active orogens where high erosion rates on hillslopes are driven by landsliding. Until now relatively few studies have focused on landslide grain size distributions. Here we present grain size distribution 5 (GSD) obtained by the grid-by-number sampling on 17 recent landslide deposits in Taiwan, and we compare it to the geometrical and physical properties of the landslides, such as their width, area, rock-type, drop height and estimated depth. All slides occurred in slightly metamorphosed sedimentary units, except two, which occurred in younger unmetamorphosed shales, with rock strength expected to be 3 to 10 times weaker from their metamorphosed counterparts. We found that 4 deposits displayed a strong grain-size segregation on their deposit with downslope toe deposits 3 to 10 times coarser than apex 10 deposits. In 3 cases, we could also measure the GSD inside the landslides that presented percentiles 3 to 10 times finer than the surface of the deposit. Both observations could be due to either kinetic sieving or deposit reworking after the landslide failure but we cannot explain why only some deposits had a strong segregation. Averaging this spatial variability we found the median grainsize of the deposits to be strongly negatively correlated to drop height, scar width and depth. However, previous work suggest that regolith particles and bedrock blocks should coarsen with increasing depth, opposite to our observation. 15 Accounting for a model of regolith coarsening with depth, we found that the ratio of the original bedrock block size and the D50 was proportional the potential energy of the landslide normalized to its bedrock strength. Thus the studied landslides agree well with a published, simple fragmentation model, even if that model was calibrated on much larger and much stronger rock avalanches than those featured in our dataset. This scaling may thus serve for future model of grain size transfer from hillslopes to river, trying to better understand landslide sediment evacuation and coupling to river erosional dynamics.


2021 ◽  
Vol 9 (4) ◽  
pp. 995-1011
Author(s):  
Odin Marc ◽  
Jens M. Turowski ◽  
Patrick Meunier

Abstract. The size of grains delivered to rivers by hillslope processes is thought to be a key factor controlling sediment transport, long-term erosion and the information recorded in sedimentary archives. Recently, models have been developed to estimate the grain size distribution produced in soil, but these models may not apply to active orogens where high erosion rates on hillslopes are driven by landsliding. To date, relatively few studies have focused on landslide grain size distributions. Here, we present grain size distributions (GSDs) obtained by grid-by-number sampling on 17 recent landslide deposits in Taiwan, and we compare these GSDs to the geometrical and physical properties of the landslides, such as their width, area, rock type, drop height and estimated scar depth. All slides occurred in slightly metamorphosed sedimentary units, except two, which occurred in younger unmetamorphosed shales, with a rock strength that is expected to be 3–10 times weaker than their metamorphosed counterparts. For 11 landslides, we did not observe substantial spatial variations in the GSD over the deposit. However, four landslides displayed a strong grain size segregation on their deposit, with the overall GSD of the downslope toe sectors being 3–10 times coarser than apex sectors. In three cases, we could also measure the GSD inside incised sectors of the landslides deposits, which presented percentiles that were 3–10 times finer than the surface of the deposit. Both observations could be due to either kinetic sieving or deposit reworking after the landslide failure, but we cannot explain why only some deposits had strong segregation. Averaging this spatial variability, we found the median grain size of the deposits to be strongly negatively correlated with drop height, scar width and depth. However, previous work suggests that regolith particles and bedrock blocks should coarsen with increasing depth, which is the inverse of our observations. Accounting for a model of regolith coarsening with depth, we found that the ratio of the estimated original bedrock block size to the deposit median grain size (D50) of the deposit was proportional to the potential energy of the landslide normalized to its bedrock strength. Thus, the studied landslides agree well with a published, simple fragmentation model, even if that model was calibrated on rock avalanches with larger volume and stronger bedrock than those featured in our dataset. Therefore, this scaling may serve for future modeling of grain size transfer from hillslopes to rivers, with the aim to better understanding landslide sediment evacuation and coupling to river erosional dynamics.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shengyao Mei ◽  
Shengshui Chen ◽  
Qiming Zhong ◽  
Yibo Shan

Landslide dams are common geological features in mountainous areas, which may have serious consequences due to sudden breaching of the dam. An effective emergency response requires rapid and accurate forecasts regarding the landslide dam breach process. However, most existing models use physical, mechanical, and erosion properties of the mean or characteristic grain sizes to represent the landslide deposits. The grain size distribution and variations in soil erodibility with the depth in the landslide dam are not considered, resulting in an incorrect estimation of the breach flow hydrograph. In this paper, a simplified landslide dam classification is presented based on the formation mechanism and grain size distribution of landslide dams. Additionally, the influences of grain size distribution on the residual dam height and breach process of landslide dams are analyzed. This paper proposes a numerical method to rapidly obtain the breach hydrographs and breach morphology evolution of landslide dams. The new method can quickly classify landslide dams according to geological survey data and predict the landslide dam breach process. Three types of representative landslide dams in China are simulated to validate the proposed method. The breach flow discharge is significantly affected by spillway excavation. This contribution can provide rapid prediction of the landslide dam breach process and can be used for the emergency response planning before dam breaching.


1970 ◽  
Vol 2 (2) ◽  
pp. K69-K73 ◽  
Author(s):  
M. Reinbold ◽  
H. Hoffmann

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2849
Author(s):  
Marcin Jan Dośpiał

This paper presents domain and structure studies of bonded magnets made from nanocrystalline Nd-(Fe, Co)-B powder. The structure studies were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Mössbauer spectroscopy and X-ray diffractometry. On the basis of performed qualitative and quantitative phase composition studies, it was found that investigated alloy was mainly composed of Nd2(Fe-Co)14B hard magnetic phase (98 vol%) and a small amount of Nd1.1Fe4B4 paramagnetic phase (2 vol%). The best fit of grain size distribution was achieved for the lognormal function. The mean grain size determined from transmission electron microscopy (TEM) images on the basis of grain size distribution and diffraction pattern using the Bragg equation was about ≈130 nm. HRTEM images showed that over-stoichiometric Nd was mainly distributed on the grain boundaries as a thin amorphous border of 2 nm in width. The domain structure was investigated using a scanning electron microscope and metallographic light microscope, respectively, by Bitter and Kerr methods, and by magnetic force microscopy. Domain structure studies revealed that the observed domain structure had a labyrinth shape, which is typically observed in magnets, where strong exchange interactions between grains are present. The analysis of the domain structure in different states of magnetization revealed the dynamics of the reversal magnetization process.


Sign in / Sign up

Export Citation Format

Share Document