Effect of Stone Powder Content on the Diffusing Parameter and Diffusion Attenuation Coefficient of Chloride Ion of Mechanical Sand Concrete

2014 ◽  
Vol 584-586 ◽  
pp. 1818-1822
Author(s):  
Ming Qiang Qin ◽  
Wen Zhan ◽  
Wen Bing Xu ◽  
Jin Hui Li

The effect of stone powder content on the chloride diffusion coefficient and diffusion attenuation coefficient of chloride ion of mechanical sand (MS) concrete was studied. The results showed that the resistance to chloride ion permeability of MS concrete firstly increased and then decreased with the increase of the content of stone powder. The anti-permeability of the concrete which had moderate amount of stone powder was better than that of the natural river sand (NS) concrete. The diffusion attenuation coefficient of MS concrete was greater than that of the NS concrete, which was good for long-term durability of concrete structure.

2014 ◽  
Vol 629-630 ◽  
pp. 162-167 ◽  
Author(s):  
Hong Jian Du ◽  
Sze Dai Pang

Cement composites are vulnerable to harsh environments in which the chloride ions can ingress into concrete and thus cause corrosion of steel. In this study, the barrier effect of adding 2-D nanoparticles on the transport properties of cement-based materials was investigated. Graphene nanoplatelet (GNP), which comprises of a few layers of graphene stacked together, is chosen as a candidate in this study due to its impermeability and also its electrical conductivity which can be exploited for self-sensing functionality. Due to the large aspect ratio of the GNP, it is expected that the dispersion of these 2-D nanobarriers can contribute to the reduced permeability and diffusion of harmful agents. Experiments were carried out on cement mortar with 0%, 2.5%, 5.0% and 7.5% of GNP by weight of cement. The water penetration depth, chloride diffusion coefficient and chloride migration coefficient were reduced by 64%, 70% and 31% respectively with the addition of as little as 2.5% of GNP. This reduction can be attributed to the barrier effect of GNP which increases the tortuosity against water and chloride ions penetration, and also the refinement of the capillary pores which was revealed from the MIP tests. At GNP content exceeding 5%, the nanoparticles agglomerate, causing weak pockets which compromises the benefits of adding GNP to impede the ingress of fluids.


2013 ◽  
Vol 368-370 ◽  
pp. 901-904
Author(s):  
Hong Song Wang ◽  
Lei Li ◽  
Rui Wang ◽  
Qian Tian

The concrete building protection materials is widely in the hydraulic and bridge engineering. In the external environment, water, chloride ion, deicing salt and freeze-thaw cycle is the greatest enemy of the concrete builidng , leading to concrete corrosion damage. we found that silane materials is an efficient materials for building protection ,water absorption rate of silicone protected specimens is no more than 0.004 mm/min0.5and the chloride diffusion coefficient was clearly reduced. The silane can penetrate into a few centimeters below the surface of the concrete structure to provide long-term protection. So the silane materials is considered the most suitable for concrete protection.


2021 ◽  
Vol 12 (3) ◽  
pp. 88
Author(s):  
Md. Shafiqul Islam ◽  
Sayem Ahmeed ◽  
Sumon Kumar Ghosh

As for the communication between concrete and the particles, the surface shows Cl− shock and Na adsorption. With expanded particle focus, the solid adsorption capacity for Cl− is upgraded as a result of a detailed overview of the dynamic molecular simulation studies examining the chloride diffusion coefficient. Different characteristics of the diffusion process, including molecular models, system-size effects, temperature, and pressure conditions, and the type of protection, are discussed. This paper focus on Molecular Dynamic Simulation to determine the diffusion coefficient of chloride ion and water molecules in concrete. The diffusion coefficient for NaCl salt obtained 6.60178x10-10m2/s and the diffusion coefficient for CaCl2 salt obtained 7.29305x10-10m2/s. So, the average chloride diffusion coefficient 6.9475x10-10m2/s. Diffusion coefficient obtained from graph 5.562x10-10m2/s. Diffusion coefficients for water molecules for NaCl solution are 6.125x10-10m2/s, 6.85x10-10m2/s, 1.044x10-10m2/s, 8.525x10-10m2/s, 6.25x10-10m2/s. diffusion coefficient of water molecules in CaCl2 solution are 4.5x10-10m2/s, 6.725x10-10m2/s, 1.254x10-10m2/s, 7.725x10-10m2/s, 1.3x10-10m2/s. Average value obtained for water molecule diffusion are 4.545x10-10m2/s, 7.4062x10-10m2/s and 1.149x10-10m2/s. This diffusion of chloride effects the binding of water in concrete pore.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Ruidong Wu ◽  
Juanhong Liu

In order to study the performance of concrete with compound admixture of iron tailings and slag powder under low cement clinker system, the mixture ratio of different iron tailings powder and slag powder was designed to prepare C30 and C50 concrete. The workability, strength, carbonation depth, chloride diffusion coefficient, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) of concrete were measured, respectively. The test results show that iron tailings powder is beneficial to improve the workability, and the strength of concrete decreases with the increase of iron tailings powder content, while the carbonation depth and chloride diffusion coefficient increase with the increase of iron tailings powder content. Under low cement clinker system, the iron tailings powder should not be used alone (below 70% of mineral admixture). When the ratio of iron tailings to slag powder is 1 : 1, the strength, carbonation depth, chloride ion permeation coefficient, and the microstructure of concrete are roughly the same to that of concrete with single slag powder. So, the iron tailings powder can replace S95 grade slag powder in the same quantity. Iron tailings powder does not take part in hydration reaction, but it can improve particle gradation, reach close accumulation, and increase the quantity of central grains.


2012 ◽  
Vol 174-177 ◽  
pp. 1199-1203
Author(s):  
Xin'gang Wang ◽  
Fang Bin Chen ◽  
Xu Na Ye ◽  
Wei Qin Zhang

Reinforced concrete segment is the main body of structure in shield tunnel, and its durability has an important effect on shield tunnel. The durability of High Durability Reinforced Concrete Segment (abbr. HDRC Segment) was investigated by impermeability of single segment and chloride diffusion coefficient of core-drilling. HDRC Segment had high compact cover, concrete cover and high strength structural-layer. Permeable height of HDRC Segment was approximately 0.5 mm when Keeping 4 hours in the constant water pressure of 0.8 MPa, and chloride diffusion coefficient of HDRC Segment was only 4.9×10-13m2/s by NEL method. As for Water impermeability and chloride ion penetration resistance, HDRC Segment is far superior to those of conventional Reinforced Concrete Segment (abbr. conventional RC Segment). It is advantageous to increase durability of HDRC Segment and service life of tunnel engineering.


2011 ◽  
Vol 90-93 ◽  
pp. 2798-2802
Author(s):  
Zu Quan Jin ◽  
Qi Chang Zhuang ◽  
Jie Lin

Chloride ion ingression into concrete under flexural load is investigated in the paper. Concrete specimens have been stored in 3.5%NaCl solution or 3.5%NaCl + 5%Na2SO4 solution for 210 days. The effect of flexural load and sulfate ion to chloride ion transmission is studied. The experimental results show that sulfate ion reduces chloride ion transmission in concrete. But when concrete under flexural load, Sulfate ion has plus and minus effect on chloride ion ingression into concrete. When the flexural load rate is low, sulfate ion reduces chloride ion transmission. But the flexural load is high, the negative effect of sulfate corrosion plays a main role. When concrete exposed to 3.5%NaCl+5%Na2SO4 solution, chloride ion diffusion coefficient of concrete in tensile zone increases with flexural load. And in compressive zone, the chloride diffusion coefficient decreases first and then raises with increasing flexural load.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5717
Author(s):  
Xiaokang Cheng ◽  
Jianxin Peng ◽  
C.S. Cai ◽  
Jianren Zhang

The existence of axial and lateral compressive stress affect the diffusion of chloride ions in concrete will lead to the performance degradation of concrete structure. This paper experimentally studied the chloride diffusivity properties of uniaxial and biaxial sustained compressive stress under one-dimensional chloride solution erosion. The influence of different sustained compressive stress states on chloride ion diffusivity is evaluated by testing chloride concentration in concrete. The experiment results show that the existence of sustained compressive stress does not always inhibit the diffusion of chloride ions in concrete, and the numerical value of sustained compressive stress level can affect the diffusion law of chloride ions in concrete. It is found that the chloride concentration decreases most when the lateral compressive stress level is close to 0.15 times the compressive strength of concrete. In addition, the sustained compressive stress has a significant effect on chloride ion diffusion of concrete with high water/cement ratio. Then, the chloride diffusion coefficient model under uniaxial and biaxial sustained compressive stress is established based on the apparent chloride diffusion coefficient. Finally, the results demonstrate that the chloride diffusion coefficient model is reasonable and feasible by comparing the experimental data in the opening literature with the calculated values from the developed model.


2020 ◽  
Vol 10 (8) ◽  
pp. 2972 ◽  
Author(s):  
Taegyu Lee ◽  
Jaehyun Lee

The mixing proportions of concrete were examined with regard to the durability performance and early strength in coastal areas. Research was conducted to improve the C24 mix (characteristic strength of 24 MPa). C35 concrete (characteristic strength of 35 MPa) was selected as a comparison group, as it exhibits the minimum proposed strength criterion for concrete in the marine environment. To secure the early strength of the C24 concrete, 50% of the total ordinary Portland cement (OPC) binder was replaced with early Portland cement (EPC); and to provide durability, 20% was substituted with ground granulated blast-furnace slag (GGBS). In addition, a polycarboxylate (PC)-based superplasticizer was used to reduce the unit water content. The compressive strength, chloride ion diffusion coefficient, chloride penetration depth, and pore structure were evaluated. After one day, the compressive strength improved by 40% when using EPC and GGBS, and an average increase of 20% was observed over 91 days. EPC and GGBS also reduced the overall porosity, which may increase the watertightness of concrete. The salt resistance performance was improved because the rapid early development of strength increased the watertightness of the surface and immobilization of chloride ions, decreasing the chloride diffusion coefficient by 50%.


Sign in / Sign up

Export Citation Format

Share Document