Dynamic Analysis and Test Validation for Continuous Girder Bridge

2014 ◽  
Vol 587-589 ◽  
pp. 1539-1542
Author(s):  
Ya Xun Yang ◽  
Peng Liu

With the rapid development of technology of bridge, bridge as an important part of the traffic network, the safety of its operations was getting more and more attention by people. In order to ensure the bridge can be safe and reliable operating, the newly built bridge testing had become a necessary measures. In this paper, a three span continuous box girder bridge (28+36+28m) was taken as an example, To analyze and calculate its dynamic characteristics, the finite element software MISAS was used. And it was verified through experiments.

2012 ◽  
Vol 178-181 ◽  
pp. 2006-2012
Author(s):  
Yu Dong Nie ◽  
Wei Zhang ◽  
Zong Lin Wang

Based on the Nenjiang Bridge located in the Qi-Gan expressway and using the finite element software ANSYS, we analysis the influences of solar radiation, free air temperature, inside temperature, wind speed, thermal conductivity of concrete, section height, flange plate length and bridge pavement on the temperature field of PC box-girder in this paper. And the solar radiation, thermal conductivity of concrete and bridge pavement is presented as the leading factors for the temperature field of PC box-girder.


2011 ◽  
Vol 55-57 ◽  
pp. 1034-1039 ◽  
Author(s):  
Li Yun Yi

This paper introduces the theory of grillage method, principles and grillage beam meshing as well as the performance calculation of grillage member section in detail. The finite element software Midas / Civil is used to establish the continuous box girder bridge model for the comparative analysis between the grillage method and single girder method, and the results show that the precision of grillage method can meet the needs of the engineering design.


2017 ◽  
Vol 39 (2) ◽  
pp. 149-164
Author(s):  
Nguyen Xuan Toan ◽  
Tran Van Duc

In this study, the finite element method (FEM) is used to investigate the dynamic response of continuous girder bridge due to moving three-axle vehicle . Vertical reaction forces of axles that change with time make bending vibration of girder significantly  increase. The braking in the first span is able to create response in other spans. In addition, the dynamic impact factors are investigated by both FEM and experiment for Hoa Xuan bridge. The results of this study provide an improved understanding of the bridge dynamic behavior and can be used as additional references for bridge codes by practicing engineers.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012061
Author(s):  
Jianmin Wang ◽  
Dong Liu ◽  
Yi Bian

Abstract The finite element modelling, mesh generation and modal analysis of the rotor worktable are carried out by combining the analysis technology of finite element software in this paper. Then, the software analysis results and the actual experimental results are compared and analyzed, so as to get the causes of error, which can provide good basic data for the use of the rotor table in the future that could better meet the needs of scientific research and teaching.


2013 ◽  
Vol 671-674 ◽  
pp. 974-979
Author(s):  
Jie Dai ◽  
Jin Di ◽  
Feng Jiang Qin ◽  
Min Zhao ◽  
Wen Ru Lu

For steel box girder of cable-stayed bridge, which using incremental launching method, during the launching process, structural system and boundary conditions were changing, structure mechanical behaviors were complex. It was necessary to conduct a comprehensive analysis on internal force and deformation of the whole structure during the launching process. Took a cable-stayed bridge with single tower, double cable planes and steel box girder in China as an example; finite element software MIDAS Civil 2010 was used to establish a model for steel box girder, simulation analysis of the entire incremental launching process was carried out. Variation rules and envelopes of the internal force, stress, deformation and support reaction were obtained. The result showed that: the maximum value of positive bending moment after launching complete was 60% of the maximum value of positive bending moment during the launching process. The maximum value of negative bending moment after launching complete was 78% of the maximum value of negative bending moment during the launching process.


Author(s):  
V. Verma ◽  
K. Nallasivam

Purpose: The primary objective of the current study is to numerically model the steel thin-walled curved box-girder bridge and to examine its various response parameters subjected to Indian Railway loading. Design/methodology/approach: The analysis is conducted by adopting a one dimensional curved thin-walled box-beam finite beam element based on finite element methodology. The scope of the work includes a computationally efficient, three-noded, one-dimensional representation of a thin-walled box-girder bridge, which is especially desirable for its preliminary analysis and design phase, as well as a study of the static characteristics of a steel curved bridge, which is critical for interpreting its dynamic response. Findings: The analytical results computed using finite element based MATLAB coding are presented in the form of various stress resultants under the effect of various combinations of Indian Railway loads. Additionally, the variation in different response parameters due to changes in radius and span length has also been investigated. Research limitations/implications: The research is restricted to the initial design and analysis phase of box-girder bridge, where the wall thickness is small as compared to the cross-section dimensions. The current approach can be extended to future research using a different method, such as Extended finite element technique on curved bridges by varying boundary conditions and number of elements. Originality/value: The validation of the adopted finite element approach is done by solving a numerical problem, which is in excellent agreement with the previous research findings. Also, previous studies had aimed at thin-walled box girders that had been exposed to point loading, uniformly distributed loading, or highway truck loading, but no research had been done on railway loading. Moreover, no previous research had performed the static analysis on thin-walled box-girders with six different response parameters, as the current study has. Engineers will benefit greatly from the research as it will help them predict the static behaviour of the curved thin-walled girder bridge, as well as assess their free vibration and dynamic response analysis.


2014 ◽  
Vol 578-579 ◽  
pp. 642-647
Author(s):  
Ya Feng Gong ◽  
Xiao Bo Sun ◽  
Huan Li Wang ◽  
Hai Peng Bi

The mechanical properties of cross beam in continuous box girder bridge can be obtained through analyzing the finite element model and measured data of bridge. A new simplified calculation method for cross beam is proposed in this paper, which is called modified shear method. Comparative analysis with traditional method is used to verify its feasibility and practicability.


1993 ◽  
Vol 20 (1) ◽  
pp. 107-119 ◽  
Author(s):  
S. F. Ng ◽  
M. S. Cheung ◽  
H. M. Hachem

To better understand the behaviour of curved box girder bridges in resisting eccentric design truck loads, and the influence of plan curvature on the structural response, a model study was conducted at the University of Ottawa. In this study, the elastic response of a curved composite box girder bridge model was evaluated experimentally and confirmed analytically using the finite element method. Analytical predictions of both vertical displacements and normal stresses at critical sections compared fairly well with those evaluated experimentally. The isoparametric thin shell element employed in the analysis proved to be versatile and provided an accurate representation of the various structural components of a curved box girder bridge. Despite the eccentric nature of the applied OHBDC design truck loads and the bridge plan curvature, it was evident that in resisting the applied live loads, the girders at critical sections share equal proportions of the applied bending moments. Key words: bridge, curved, cellular, composite, eccentric loads, static, linear, experimental, finite element.


2012 ◽  
Vol 226-228 ◽  
pp. 102-105
Author(s):  
Wen Qing Zhu ◽  
Yang Yong Zhu

With the rapid development of high-speed railway in China, the aerodynamic brake is very likely to be an important emergency braking mode of high-speed train in the future. This paper takes aerodynamic braking wing as the object, and uses the finite element software to divide the meshes, then analyses the model influenced by static stress. After simulating the vibratory frequency response of the model in the flow field, it finds that the largest deformation happens in the middle of the upper edge of the wind wing, when the wind speed gets to 500km/h and the load frequency to 4Hz. Some conclusions of this thesis can provide reference for researching the applying the aerodynamic brake in the high-speed trains and laying the foundation for solving the riding and braking safety problems.


Sign in / Sign up

Export Citation Format

Share Document