Design of Active Filter Based on the Active Power Balance

2014 ◽  
Vol 596 ◽  
pp. 709-712
Author(s):  
Ling Ji

In order to eliminate harmonics generated by the power electronic devices, from a functional point of view the amount of the balance, the use of filters to supply current and DC voltage is sampled in a controlled manner to achieve harmonic compensation, the establishment of a single-phase active power filter the control system of the model and the theoretical analysis of the program by Saber simulation software has been validated in simulation, based on a prototype developed, according to the single-phase shunt active filter to achieve our scheme can effectively harmonic compensation for pollution caused by the rectifier with inductive load, simulation and experimental results show that this method can be controlled harmonic distortion at 5.8%.

2017 ◽  
Vol 27 (01) ◽  
pp. 1850016 ◽  
Author(s):  
R. Karthika ◽  
V. Suresh Kumar

In this paper, a DC-link voltage tuning algorithm is introduced to control the shunt active filter (SAF) with sinusoidal and trapezoidal power supplies. The purpose of the proposed optimization algorithm is for tuning the PI controller and reducing the harmonics level. Artificial bee colony (ABC) algorithm is introduced for tuning the gain of the controller and the voltage variation of power converter by using PWM pulses. It regulates the DC-link voltage as per the signal harmonics and the active power loss of the system is reduced. Therefore, the accurate compensation current is injected by the SAF devices. The proposed ABC-PI controller-based harmonic compensation method is implemented in MATLAB/Simulink platform. Then, the Total Harmonic Distortion (THD) and the power factor are evaluated. The results of the proposed method are compared with PI controller and PSO-PI controller. The proposed method has fast DC-link voltage response, low THD and good power factor.


2014 ◽  
Vol 622 ◽  
pp. 121-126
Author(s):  
Rahiman Zahira ◽  
A. Peer Fathima ◽  
Ranganath Muthu

This paper presents the fuzzy logic controller for shunt active power filter used to compensate harmonic distortion in a three-phase system. The shunt active filter employs a simple method for estimating the reference compensation current. A fuzzy logic based current control strategy is used to regulate the filter current and hence ensure harmonic free supply current. Classic filters may not have satisfactory performance in fast varying conditions. However, an auto-tuned active power filter gives better results for harmonic minimization and power factor improvement. The proposed fuzzy based shunt active filter maintains the THD well within IEEE-519 standards. The validity of the presented approach in harmonic mitigation is verified by simulation results in MATLAB/ Simulink and hardware prototype.


Author(s):  
Dasari Vinay

In this paper we are going to see how the DSM PI controller is used to reduce the harmonics in faster. DSM PI controller steps up the voltage to required level. The main aim is to improve the total harmonic distortion. Keywords: Shunt active filter, hybrid active filters, DSM PI controller


Author(s):  
Adel Elgammal ◽  
Curtis Boodoo

This article offers a clear and realistic design for an active power filter to increase reliability and power quality of the photovoltaic charging system and a high-penetration electric vehicle distribution system. The MOPSO algorithm is used as the basis for problems with optimization and filter tuning. A typical regular load curve is used to model the warped power grid over a 24-hour cycle to estimate the total harmonic distortion (THD). For structures with high penetration of electric cars, the probability of minimizing THD (for example to five percent) is explored via optimum capacity active shunt filters and shunt capacitors. To maximize general performance of the charging system, the switching systems are re-scheduled. Moreover, to increase the current control accuracy of shunt active filter, the fuzzy logic controller is utilized. The major drawback to new system is that it would have unrestricted billing for entire day to cope with voltage interruption. In MATLAB / SIMULINK, detailed machine setup and control algorithm experiments are simulated. The simulation findings confirm the efficiency and viability of projected shunt active filter to enhance voltage profile and track power performance of photovoltaic charging system.


Author(s):  
G. Escobar ◽  
P. Martinez-rodriguez ◽  
M. Hernandez-Gomez ◽  
S. Yanez-campos

Sign in / Sign up

Export Citation Format

Share Document