A repetitive based controller for a shunt active filter to compensate for reactive power and harmonic distortion

Author(s):  
G. Escobar ◽  
R. Ortega ◽  
A. Astolfi ◽  
M.F. Martinez ◽  
J. Leyva-Ramos
Author(s):  
Adel Elgammal ◽  
Curtis Boodoo

This article offers a clear and realistic design for an active power filter to increase reliability and power quality of the photovoltaic charging system and a high-penetration electric vehicle distribution system. The MOPSO algorithm is used as the basis for problems with optimization and filter tuning. A typical regular load curve is used to model the warped power grid over a 24-hour cycle to estimate the total harmonic distortion (THD). For structures with high penetration of electric cars, the probability of minimizing THD (for example to five percent) is explored via optimum capacity active shunt filters and shunt capacitors. To maximize general performance of the charging system, the switching systems are re-scheduled. Moreover, to increase the current control accuracy of shunt active filter, the fuzzy logic controller is utilized. The major drawback to new system is that it would have unrestricted billing for entire day to cope with voltage interruption. In MATLAB / SIMULINK, detailed machine setup and control algorithm experiments are simulated. The simulation findings confirm the efficiency and viability of projected shunt active filter to enhance voltage profile and track power performance of photovoltaic charging system.


Author(s):  
C.S Boopathi ◽  
Kuppusamy Selvakumar ◽  
Avisek Dutta

In this paper unified power quality conditioner has been used to enhance low voltage ride through capability of grid connected wind conversion system taking Doubly fed induction generator (DFIG). Unified Power quality conditioner (UPQC) device is a combination of series active filter and shunt active filter. This custom power device is mainly used to mitigate power quality issues which is an essential factor today because of wide application of power electronics devices. UPQC is capable to deal with voltage and current imperfection simultaneously. It is installed in the system mainly to improve the power quality i.e. Voltage sag/swell, Harmonics, reactive power compensation etc. at point of common coupling. System is modeled in MATLAB/SIMULINK and results shows utilization of UPQC for the enhancement of LVRT of a DFIG wind system according to Grid code. when fault occurs in the system, it will create voltage dip and series compensator of UPQC injects during this time to prevent disconnection from grid and stay connected to contribute during fault. UPQC is also used for fast restoration of system steady state, power factor improvement, prevent rotor over current.


2020 ◽  
Vol 15 (1) ◽  
pp. 181-186
Author(s):  
Tilak Giri ◽  
Ram Prasad Pandey ◽  
Sabin Bhandari ◽  
Sujan Moktan ◽  
Lagat Karki

Due to intensive use of power converters and other non-linear loads, power quality is degrading. The presence of harmonics in the power lines result in greater power losses in distribution, interference problems in communication systems. Non linearity reduces the efficiency and power factor of the system. As the power factor reduces, the reactive power demanded from the supply increases which have no any contribution in energy transfer, so compensation is required. For this, shunt passive filter has been developed but it is bulky and frequency dependent and has many drawbacks. In contrast to passive filter, shunt active filter (SAF) has been developed which is smaller and has wide range of applications. In this paper, shunt active filter based on p-q theory is demonstrated for compensating reactive power and current harmonics. Simulation has been done with and without SAF and results are presented and ended with recommendation and conclusion. An effort is made to reduce the THD of the source current below 5% (specified by IEEE).


2014 ◽  
Vol 23 (09) ◽  
pp. 1450132 ◽  
Author(s):  
G. VIJAYAKUMAR ◽  
R. ANITA

This paper presents an operation of photovoltaic (PV)-based shunt active filter (SAF) for significant energy conservation, harmonic mitigation and reactive power compensation. When the PV system generates excessive or equal power required to the load demand, then the coordinating logic disconnects the service grid from the load and with a consequent reduction of panel tariff and global warming gasses. The PV module is connected to the DC side of SAF through the DC–DC converter. Converter switch is controlled by fuzzy-based perturb & observe (P&O) maximum power point tracking (MPPT) algorithm and it eliminates the drawback in the conventional PV system. The reference currents are extracted by the fuzzy logic controller-based ICos Φ control strategy. This proposed PV-SAF, if connected at the terminals of a small industry or a home or a small enlightening institution can avoid the use of interruptible power supply and individual stabilizer. An emulation using MATLAB Simulink is presented to validate the advantage of the proposed system.


Sign in / Sign up

Export Citation Format

Share Document