Fine Spin Filtering Effect in Co-Phthalocyanine Molecule Induced by the Spin Polarization of Co Atom

2014 ◽  
Vol 597 ◽  
pp. 127-130
Author(s):  
Yan Hong Zhou ◽  
X.H. Qiu ◽  
L.L. Zhou ◽  
Y.L. Peng

Spintronic devices will play a very important role in future information technology. In this study, By spin-polarized density-functional theory calculations combined with the Keldysh nonequilibrium Green’s method, the effect of the spin direction of Co atom in Co- phthalocyanine molecule in modulating spin filtering effects under external biases are investigated. Here, an individual single molecule Co-phthalocyanine is sandwiched between two infinite 8-zigzag-graphene nanoribbon electrodes. we find that the spin direction of the Co atom relative to the magnetic polarization of the left and right electrodes can improve the spin filtering effect greatly. when the polarization direction of the two electrodes is antiparallel and the polarization of Co atom in the Co-phthalocyanine molecule upward, the configuration posesses almost perfectly spin-filter effect. The underlying mechanism of the perfect spin filtering action is applied.

Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1747 ◽  
Author(s):  
Feifei Li ◽  
Jing Huang ◽  
Jianing Wang ◽  
Qunxiang Li

Control over spin states at the single molecule level is a key issue in the emerging field of molecular spintronics. Here, we explore the chemical adsorption effect on the magnetic and spin-transport properties of individual magnetic molecule by performing extensive density functional theory calculations in combining with non-equilibrium Green’s function method. Theoretical results clearly reveal that the molecular magnetic moment of Mn-salophen can be effectively tuned by adsorbing F and CO on the central Mn cation, while the adsorbed NO molecule quenches the molecular magnetic moment. Without chemical adsorption, the currents through Mn-salophen molecular junction just show a little distinction for two spin channels, which agrees well with previous investigation. Remarkably, the conductive channel can be switched from the spin-up electrons to the spin-down electrons via adsorbing F and CO, respectively, and the corresponding two Mn-salophen molecular junctions with chemical modifications display nearly perfect spin-filtering effect. The observed spin switch and the predicted spin-filtering effect via chemical adsorption indicates that Mn-salophen holds potential applications in molecular spintronic devices.


SPIN ◽  
2014 ◽  
Vol 04 (02) ◽  
pp. 1440016
Author(s):  
SHENLANG YAN ◽  
MENGQIU LONG ◽  
XIAOJIAO ZHANG ◽  
JUN HE ◽  
HUI XU ◽  
...  

Using nonequilibrium Green's functions (NEGFs) combined with the density functional theory (DFT), we study the electronic transport properties of a single molecule magnet Co ( dmit )2, which is sandwiched between two monatomic chain electrodes, and the different electrode materials carbon, iron and gold, have been considered. The results show that the electrodes play a crucial role in the spin-dependent transport of the Co ( dmit )2 molecular device, and some interesting phenomenon, such as perfect spin-filtering effect, rectifying and negative differential resistance (NDR) can be observed. We demonstrated that the magnetic Fe electrode can lead to high spin-flittering effect, and the different hybridization and alignment of energy levels between the molecule and the electrodes may be responsible for the rectification performance, and the distributions (delocalization or localization) of the frontier molecular orbitals under different bias result in the NDR behaviors. These characteristics could be used in the study of spin physics and the realization of nanospintronic devices.


2021 ◽  
Vol 31 (4) ◽  
pp. 389
Author(s):  
Nguyen Thanh Tien ◽  
Nguyen Thanh Tuan ◽  
Pham Thi Bich Thao

Electronic, magnetic and spin-polarized transport properties of the zigzag-zigzag pentagraphene nanoribbon are investigated theoretically within the framework of density functional theory combined with non-equilibrium Green’s function formalism. It is found that the spinunpolarized ZZ-PGNR behaves as metal. However, the spin-polarized ZZ-PGNRs show to be the magnetic semiconductor properties. More importantly, for the ZZ-PGNRs based device, the spin-filtering effect occurs strongly near Fermi level. Our findings suggest that ZZ-PGNRs might hold a significant promise for developing spintronic devices.


2019 ◽  
Vol 21 (46) ◽  
pp. 25743-25748
Author(s):  
Yong-Chao Rao ◽  
Xiang-Mei Duan

The catalytic performance of Pd/Pt embedded planar carbon nitride for CO oxidation has been investigated via spin-polarized density functional theory calculations.


2018 ◽  
Vol 5 (3) ◽  
Author(s):  
Alaska Subedi

I study the structural and magnetic instabilities in LaNiO_33 using density functional theory calculations. From the non-spin-polarized structural relaxations, I find that several structures with different Glazer tilts lie close in energy. The PnmaPnma structure is marginally favored compared to the R\overline{3}cR3¯c structure in my calculations, suggesting the presence of finite-temperature structural fluctuations and a possible proximity to a structural quantum critical point. In the spin-polarized relaxations, both structures exhibit the \uparrow\!\!0\!\!\downarrow\!\!0↑0↓0 antiferromagnetic ordering with a rock-salt arrangement of the octahedral breathing distortions. The energy gain due to the breathing distortions is larger than that due to the antiferromagnetic ordering. These phases are semimetallic with small three-dimensional Fermi pockets, which is largely consistent with the recent observation of the coexistence of antiferromagnetism and metallicity in LaNiO_33 single crystals by Guo et al. [Nat. Commun. 9, 43 (2018)].


RSC Advances ◽  
2015 ◽  
Vol 5 (1) ◽  
pp. 760-769 ◽  
Author(s):  
Shuguang Zhang ◽  
Ning Han ◽  
Xiaoyao Tan

Spin-polarized DFT calculations were used to investigate the atomic, electronic structures of LaCoO3and La1−xSrxCoO3surfaces. The thermodynamic stability of these surfaces was analyzed with phase diagrams. Influence of Sr-doping was also examined.


Author(s):  
Yaoxing Sun ◽  
Bei Zhang ◽  
shidong zhang ◽  
Dan Zhang ◽  
Jiwei Dong ◽  
...  

Based on MoC2 nanoribbons and poly-(terphenylene-butadiynylene) (PTB) molecules, we designed MoC2-PTB molecular spintronic devices and investigated their spin-dependent electron transport properties by using spin-polarized density functional theory and non-equilibrium Green's...


Nanoscale ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 3780-3785 ◽  
Author(s):  
Ik Seon Kwon ◽  
In Hye Kwak ◽  
Hafiz Ghulam Abbas ◽  
Hee Won Seo ◽  
Jaemin Seo ◽  
...  

Mn-Porphyrin-MoS2 exhibits excellent electrocatalytic activity toward the hydrogen evolution reaction, which is supported by spin-polarized density functional theory calculations.


2020 ◽  
Vol 6 (22) ◽  
pp. eaba6714 ◽  
Author(s):  
Shiqiang Zhao ◽  
Qingqing Wu ◽  
Jiuchan Pi ◽  
Junyang Liu ◽  
Jueting Zheng ◽  
...  

Two-dimensional van der Waals heterojunctions (2D-vdWHs) stacked from atomically thick 2D materials are predicted to be a diverse class of electronic materials with unique electronic properties. These properties can be further tuned by sandwiching monolayers of planar organic molecules between 2D materials to form molecular 2D-vdWHs (M-2D-vdWHs), in which electricity flows in a cross-plane way from one 2D layer to the other via a single molecular layer. Using a newly developed cross-plane break junction technique, combined with density functional theory calculations, we show that M-2D-vdWHs can be created and that cross-plane charge transport can be tuned by incorporating guest molecules. The M-2D-vdWHs exhibit distinct cross-plane charge transport signatures, which differ from those of molecules undergoing in-plane charge transport.


2019 ◽  
Vol 7 (14) ◽  
pp. 8101-8106 ◽  
Author(s):  
In Hye Kwak ◽  
Hafiz Ghulam Abbas ◽  
Ik Seon Kwon ◽  
Yun Chang Park ◽  
Jaemin Seo ◽  
...  

Cobaltocene-intercalated WS2 nanosheets exhibit excellent catalytic activity toward the hydrogen evolution reaction, which is supported by spin-polarized density functional theory calculations.


Sign in / Sign up

Export Citation Format

Share Document