Ionic Distribution in Plasma for the Process of Electron-Beam Physical Vapor Deposition

2014 ◽  
Vol 597 ◽  
pp. 153-156
Author(s):  
Ching Yen Ho ◽  
Wen Chieh Wu

This paper investigates ionic distribution generated by electron beam (EB) during Physical Vapor Deposition (PVD). EB-PVD has a wide range of applications in thermal barrier coatings (TBCs) due to favorable characteristics compared with other coating processes. EB-PVD is an important material coating method that utilizes electron beams as heat sources to evaporate materials, which are then deposited on a substrate. Therefore EB-induced ionic distribution dominates the quality and thickness of the final coating on the substrate. Assuming the EB-generated plasma to be only a function of radial direction, the steady-state equations of continuity and motion combined with Posson’s equation were utilized to analyze the plasma distributions along the radial direction. The available experimental data are also used to validate the model. The results show that the coating efficiency can be improved by decreasing the ratio of the electron thermal energy to the initial ion energy and increasing the ratio of the initial ion density to the initial electron density. The uniformity of coating can be achieved by reducing the initial ion density.

2011 ◽  
Vol 55-57 ◽  
pp. 183-187 ◽  
Author(s):  
Zhao Hui Hu ◽  
Yi Li ◽  
Li Ma ◽  
Hong Jun Liu

Ti-TiAl multi-layered materials have been prepared by electron beam physical vapor deposition technique. The tensile behavior of samples at room temperature and high temperature was tested, and then the deformation mechanism at different temperature was analyzed according to the fracture surface. The results show that the tensile curves hot-pressed samples have a broad step during the plastic deformation process, and the breaking strain of the sample has been increased for a wide-range. The presence of Ti layers have led to the cracks stagger along the inter-laminar interface or the layer due to which micro laminate expresses a good characteristic of delayed fracture. With the increase of temperature, the bulk modulus and yield strength of multi-layered Ti-TiAl have been increased abnormally due to the anomalous yield strengthening behavior of TiAl intermetallic.


2006 ◽  
Vol 522-523 ◽  
pp. 267-276 ◽  
Author(s):  
Kunihiko Wada ◽  
Yutaka Ishiwata ◽  
Norio Yamaguchi ◽  
Hideaki Matsubara

Several kinds of thermal barrier coatings (TBCs) deposited by electron beam physical vapor deposition (EB-PVD) were produced as a function of electron beam power in order to evaluate their strain tolerance. The deposition temperatures were changed from 1210 K to 1303 K depending on EB power. In order to evaluate strain tolerances of the EB-PVD/TBCs, a uniaxial compressive spallation test was newly proposed in this study. In addition, the microstructures of the layers were observed with SEM and Young’s moduli were measured by a nanoindentation test. The strain tolerance in as-deposited samples decreased with an increase in deposition temperature. In the sample deposited at 1210 and 1268 K, high-temperature aging treatment at 1273 K for 10 h remarkably promoted the reduction of the strain tolerance. The growth of thermally grown oxide (TGO) layer generated at the interface between topcoat and bondcoat layers was the principal reason for this strain tolerance reduction. We observed TGO-layer growth even in the as-deposited sample. Although the thickness of the initial TGO layer in the sample deposited at high temperature was thicker, the growth rate during aging treatment was smaller than those of the other specimens. This result suggests that we can improve the oxidation resistance of TBC systems by controlling the processing parameters in the EB-PVD process.


Author(s):  
Mélanie Auffan ◽  
Catherine Santaella ◽  
Alain Thiéry ◽  
Christine Paillès ◽  
Jérôme Rose ◽  
...  

2019 ◽  
Vol 293 ◽  
pp. 83-95
Author(s):  
Marek Szindler

The use of thin films in optoelectronic and photovoltaic devices is aimed at improving the physical properties of the substrate material. The modification of the surface of the silicon substrate is thus one of the greatest challenges in research on photovoltaic materials, in order to achieve even greater efficiency or better adapt their properties depending on the application. The technologies of applying layers vary depending on the effect to be obtained and the material from which the layer is formed. In practice, the most common method is chemical vapor deposition and physical vapor deposition, and the most commonly applied optical materials are SiO2, TiO2 and Si3N4.This paper presents the results of investigations on morphology and optical properties of the prepared aluminium oxide thin films. Thin films were prepared with use of sol-gel spin coating method. Surface morphology studies were carried out using an atomic force microscope. To characterize the surface of the thin films, 3D images and histograms of the frequency of individual inequalities were made. In order to characterize the optical properties of Al2O3 thin films, the reflectance and light transmission tests were performed using a spectrophotometer. Optical constants were determined using a spectroscopic ellipsometer. Results and their analysis show that the sol-gel method allows the deposition of homogenous thin films of Al2O3 with the desired geometric characteristics and good optical properties. Uniform, continuous thin layers with a roughness not exceeding a few nanometres were deposited. Their deposition enabled to reduce the reflection of light from the polished substrate below 15% in a wide range (425-800nm) while maintaining high transparencies (over 90%). The obtained results causes that mentioned thin films are good potential material for optics, optoelectronics and photovoltaics.


2006 ◽  
Vol 38 (6) ◽  
pp. 651-658 ◽  
Author(s):  
O. N. Gerasimchuk ◽  
G. A. Sergienko ◽  
V. I. Bondarchuk ◽  
A. V. Terukov ◽  
Yu. S. Nalimov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document