physical vapor deposition method
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4264
Author(s):  
Juris Bitenieks ◽  
Krisjanis Buks ◽  
Remo Merijs-Meri ◽  
Jana Andzane ◽  
Tatjana Ivanova ◽  
...  

This research is devoted to the fabrication of polyvinyl alcohol (PVOH) based n-type thermoelectric composites with innovative hybrid bismuth selenide-multiwalled carbon nanotube (Bi2Se3-MWCNT) fillers for application in flexible thermoelectric devices. Hybrid fillers were synthesized by direct deposition of Bi2Se3 on multiwalled carbon nanotubes using a physical vapor deposition method, thus ensuring direct electrical contact between the carbon nanotubes and Bi2Se3. The Seebeck coefficient of prepared PVOH/Bi2Se3-MWCNT composites was found to be comparable with that for the Bi2Se3 thin films, reaching −100 µV·K−1 for the composite with 30 wt.% filler, and fluctuations of the resistance of these composites did not exceed 1% during 100 repetitive bending cycles down to 10 mm radius, indicating the good mechanical durability of these composites and proving their high potential for application in flexible thermoelectrics. In addition, other properties of the fabricated composites that are important for the use of polymer-based materials such as thermal stability, storage modulus and linear coefficient of thermal expansion were found to be improved in comparison with the neat PVOH.


2021 ◽  
Vol 904 ◽  
pp. 501-505
Author(s):  
Jozef Čerňan ◽  
Pavol Pecho ◽  
Filip Škultéty ◽  
Michal Janovec

Hard coatings applied by the Physical Vapor Deposition method often provide very good mechanical properties, especially when applied to metal parts that are mentioned to withstand certain level of wear. In this study, TiN coating combined with deep rolling were applied to the investigated steel samples, prepared by powder metallurgy and subjected to contact-fatigue stress. Computational analysis of stress states in samples by the finite element method helped to reveal the behavior and formation of fatigue failures when loading samples. The results, processed in the form of fatigue curves, probabilistic Weibull curves using metallography and electron microscopy, showed a positive effect of the used coatings and their combination with other surface treatments on the contact-fatigue strength of the examined samples. Microscopic study also showed the different mechanisms of crack formation and of crack propagation rate due to contact loading of material with a laser hardened surface, which has an obvious impact on material lifetime.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 145
Author(s):  
Miłosz Grodzicki

In this paper, the surface properties of bare and film-covered gallium nitride (GaN) in wurtzite form, (0001) oriented, are summarized. Thin films of several elements—manganese, nickel, palladium, arsenic, and antimony—were formed by the physical vapor deposition method. The results of the bare surfaces, as well as the thin film/GaN(0001) phase boundaries presented, were characterized by X-ray and ultraviolet photoelectron spectroscopies (XPS, UPS). Basic information on the electronic properties of GaN(0001) surfaces are shown. Different behaviors of the thin films, after postdeposition annealing in ultrahigh vacuum conditions such as surface alloying and subsurface dissolving and desorbing, were found. The metal films formed surface alloys with gallium (MnGa, NiGa, PdGa), while the semimetal (As, Sb) layers easily evaporate from the GaN(0001) surface. However, the layer in direct contact with the substrate could react with it, modifying the surface properties of GaN(0001).


2020 ◽  
Vol 846 ◽  
pp. 169-174
Author(s):  
Sugeng Supriadi ◽  
Annisa Ovilia ◽  
Nurul Ilmaniar ◽  
Bambang Suharno

This study aims to equip orthodontic bracket SS 17-4 PH fabricated using metal injection molding with antibacterial properties. This can be achieved by applying TiO2 coating on the surface of brackets using magnetron sputtering PVD method. This method is chosen due to its compatibility to be used on bulk metal and its ability to control thin-film stoichiometry. Samples were prepared using the series of following steps which comprised of metal injection molding, binder elimination with solvent and thermal debinding, sintering in vacuum and argon atmosphere, electropolishing, and magnetron sputtering PVD coatings as the final stage. Negative bias, sputtering power, and partial pressure on vacuum chamber were set as the constant parameters. The atmosphere inside the PVD chamber was controlled using oxygen and argon gases. XRD and SEM observations were carried out to obtain the information on the phase and morphology of the films. Rutile and anatase crystalline structures with 2,27 nm and 9,78 nm crystal size were measured in as-deposited PVD TiO2 respectively. The deposition films were achieved in the range of 3 μm-8 μm.


2019 ◽  
Vol 52 (2) ◽  
pp. 312-321 ◽  
Author(s):  
J. Bibin ◽  
A. G. Kunjomana

Stoichiometric antimony selenide (Sb2Se3) nanocrystals have been successfully engineered by a facile physical vapor deposition method, employing a single precursor of polycrystalline Sb2Se3 charge in a closed quartz ampoule under high vacuum without any foreign seed or extraneous chemical elements. This work underscores the efficacy of the vapor deposition process and provides synthetic strategies to scale down bulk Sb2Se3 into novel nanostructures. The morphological evolution of the tailored architecture was examined on micro and nano size scales by scanning electron microscopy and high-resolution transmission electron microscopy. The intrinsic mechanism governing the nanostructure formation is revealed as layer-by-layer growth, related to the unique layered structure of Sb2Se3. The optical properties of the grown crystals were probed by UV–vis–NIR and photoluminescence tools. The band-gap values of the microfibers, nanorods, nanooctahedra and nanospheres estimated from UV–vis–NIR analysis are found to be 1.25, 1.47, 1.51 and 1.75 eV, respectively. Powder X-ray diffraction, energy-dispersive analysis by X-rays, X-ray photoelectron spectroscopy, Raman spectroscopy and photoluminescence studies confirmed the quality, phase purity and homogeneity of the as-grown nanostructures. The adopted physical vapor deposition method is thus shown to be a simple and elegant route which resulted in the enhancement of the band gap for the Sb2Se3 samples compared with their counterparts grown by chemical methods. This approach has great potential for further applications in optoelectronics.


2019 ◽  
Vol 97 (2) ◽  
pp. 222-226 ◽  
Author(s):  
Deepika ◽  
Hukum Singh

This paper reports the study of DC electrical conductivity of films of Se80−xTe20Bix (0 ≤ x ≤ 12) glasses prepared using physical vapor deposition method. The films were structurally characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM results indicate the formation of nanorods within the films. The electrical conductivity of the samples was studied using Keithley electrometer in the temperature range 303–373 K. The results show that conduction in these samples takes place via thermally assisted tunnelling and variable range hopping of charge carriers corresponding to higher and lower temperature ranges, respectively. Further, it was found that the conductivity increases with increase in Bi concentration in Se–Te system. This has been explained on the basis of chemically ordered network model. It was also found that nanorod formation improves the electrical conductivity of Se–Te–Bi system compared to bulk Se–Te–Bi system.


2018 ◽  
Vol 7 (4) ◽  
pp. 453-458 ◽  
Author(s):  
Arkilang Challam ◽  
Cyril Robinson Azariah John Chelliah ◽  
D. Nirmal ◽  
Rajesh Swaminathan

2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Naveen Kumar Gupta ◽  
Arun Kumar Tiwari ◽  
Subrata Kumar Ghosh

The enhancements in thermal performance of mesh wick heat pipe (HP) using TiO2/H2O nanofluid (0.5, 1.0, and 1.5 vol %) as working fluid for different (50, 100, and 150 W) power input were investigated. Results showed maximum 17.2% reduction in thermal resistance and maximum 13.4% enhancement in thermal efficiency of HP using 1.0 vol % nanofluid as compared to water. The wick surface of the HP was then coated with TiO2 nanoparticles by physical vapor deposition method. The experimental investigation had been also carried out on coated wick HP using water as working fluid. Results showed 12.1% reduction in thermal resistance and 11.9% enhancement in thermal efficiency of the HP as compared to uncoated wick HP using water. Temporal deteriorations in thermal performance during prolonged working (2, 4, and 6 months) of HP were also studied. Temporal deterioration in thermal performance of HP filled with nanofluid depends upon the deterioration in thermophysical properties of nanofluids. The deterioration is due to the agglomeration and sedimentation of nanoparticles with respect to the time. Comparative study shows that after a certain time of operation, thermal performance of HP with nanoparticle coated wick superseded that of the HP filled with nanofluid. Therefore, nanoparticle coating might be a good substitute for nanofluid to avoid the stability issues. The present paper provides incentives for further research to develop nanofluids that avoid the encountered sedimentation or agglomeration.


Sign in / Sign up

Export Citation Format

Share Document