Study on the Young’s Modulus of Red Blood Cells Using Atomic Force Microscope

2014 ◽  
Vol 627 ◽  
pp. 197-201 ◽  
Author(s):  
Cheng Chang Lien ◽  
Meng Chien Wu ◽  
Chyung Ay

The force-displacement curves of rat’s red blood cells (RBC) were measured by atomic force microscope (AFM) in this study, and the young’s modulus of RBC were calculated. The different speed and loads of probe on AFM was conducted to exam the effect of young’s modulus in RBC. Furthermore, the relationship between young’s modulus of RBC and different depth of indentation from force-displacement curves were investigated. The experimental results and analysis showed that when probe’s maximum load was 5 nN and the velocity was set for 1, 5, 10 and 20 μm/s, the young’s modulus of normal red blood cells for probe down measurements to AFM were 129.56 ± 42.80, 141.56 ± 31.15, 147.90 ± 24.35 and 149.69 ± 29.27 kPa, respectively. It represented that the young’s modulus of normal red blood cells depended on probe’s velocity. Then when probe’s velocity was 1 μm/s and the load was changed to 1, 5 and 10 nN, the young’s modulus of normal red blood cells were measured for 41.45 ± 22.64, 82.72 ± 53.99 and 202.40 ± 16.01 kPa, respectively. It represented that the young’s modulus of normal red blood cells depended on the probe’s load. On the other side, the results of force-displacement curves exam demonstrated that the deeper of probe indented in cells, the measured young’s modulus of normal red blood cells would be increased more.

2019 ◽  
Vol 9 (13) ◽  
pp. 2604 ◽  
Author(s):  
Ashley D. Slattery ◽  
Adam J. Blanch ◽  
Cameron J. Shearer ◽  
Andrew J. Stapleton ◽  
Renee V. Goreham ◽  
...  

Cantilever devices have found applications in numerous scientific fields and instruments, including the atomic force microscope (AFM), and as sensors to detect a wide range of chemical and biological species. The mechanical properties, in particular, the spring constant of these devices is crucial when quantifying adhesive forces, material properties of surfaces, and in determining deposited mass for sensing applications. A key component in the spring constant of a cantilever is the plan-view shape. In recent years, the trapezoidal plan-view shape has become available since it offers certain advantages to fast-scanning AFM and can improve sensor performance in fluid environments. Euler beam equations relating cantilever stiffness to the cantilever dimensions and Young’s modulus have been proven useful and are used extensively to model cantilever mechanical behaviour and calibrate the spring constant. In this work, we derive a simple correction factor to the Euler beam equation for a beam-shaped cantilever that is applicable to any cantilever with a trapezoidal plan-view shape. This correction factor is based upon previous analytical work and simplifies the application of the previous researchers formula. A correction factor to the spring constant of an AFM cantilever is also required to calculate the torque produced by the tip when it contacts the sample surface, which is also dependent on the plan-view shape. In this work, we also derive a simple expression for the torque for triangular plan-view shaped cantilevers and show that for the current generation of trapezoidal plan-view shaped AFM cantilevers, this will be a good approximation. We shall apply both these correction factors to determine Young’s modulus for a range of trapezoidal-shaped AFM cantilevers, which are specially designed for fast-scanning. These types of AFM probes are much smaller in size when compared to standard AFM probes. In the process of analysing the mechanical properties of these cantilevers, important insights are also gained into their spring constant calibration and dimensional factors that contribute to the variability in their spring constant.


2021 ◽  
pp. 1-8
Author(s):  
Di Chang ◽  
Takahiro Hirate ◽  
Chihiro Uehara ◽  
Hisataka Maruyama ◽  
Nobuyuki Uozumi ◽  
...  

Abstract


Author(s):  
А.В. Анкудинов ◽  
М.М. Халисов

Consoles and bridges of MgNi2Si2O5(OH)4 nanoscrolls were tested for bending in atomic force microscope. Using test data, we analyze how the consoles or bridges were fixed, and took this information into account when calculating the Young's modulus of the nanoscrolls. The results on the consoles are in good agreement with the results on the bridges when modeling the latter as three-span beams, and the former as beams on an elastic foundation with a suspended console.


2008 ◽  
Vol 600-603 ◽  
pp. 867-870
Author(s):  
Gwiy Sang Chung ◽  
Ki Bong Han

This paper presents the mechanical properties of 3C-SiC thin film according to 0, 7, and 10 % carrier gas (H2) concentrations using Nano-Indentation. When carrier gas (H2) concentration was 10 %, it has been proved that the mechanical properties, Young’s Modulus and Hardness, of 3C-SiC are the best of them. In the case of 10 % carrier gas (H2) concentration, Young’s Modulus and Hardness were obtained as 367 GPa and 36 GPa, respectively. When the surface roughness according to carrier gas (H2) concentrations was investigated by AFM (atomic force microscope), when carrier gas (H2) concentration was 10 %, the roughness of 3C-SiC thin was 9.92 nm, which is also the best of them. Therefore, in order to apply poly 3C-SiC thin films to MEMS applications, carrier gas (H2) concentration’s rate should increase to obtain better mechanical properties and surface roughness.


2004 ◽  
Vol 10 (S02) ◽  
pp. 1098-1099
Author(s):  
Charles B Mooney ◽  
Keiichi Nakamoto ◽  
Shin-ichi Kitamura

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


1994 ◽  
Vol 14 (3) ◽  
pp. 197-200 ◽  
Author(s):  
Pierre Zachée ◽  
Marc Boogaerts ◽  
Johan Snauwaert ◽  
Louis Hellemans

Sign in / Sign up

Export Citation Format

Share Document