scholarly journals Тестирование на изгиб наноразмерных консолей в атомно-силовом микроскопе

Author(s):  
А.В. Анкудинов ◽  
М.М. Халисов

Consoles and bridges of MgNi2Si2O5(OH)4 nanoscrolls were tested for bending in atomic force microscope. Using test data, we analyze how the consoles or bridges were fixed, and took this information into account when calculating the Young's modulus of the nanoscrolls. The results on the consoles are in good agreement with the results on the bridges when modeling the latter as three-span beams, and the former as beams on an elastic foundation with a suspended console.

2019 ◽  
Vol 9 (13) ◽  
pp. 2604 ◽  
Author(s):  
Ashley D. Slattery ◽  
Adam J. Blanch ◽  
Cameron J. Shearer ◽  
Andrew J. Stapleton ◽  
Renee V. Goreham ◽  
...  

Cantilever devices have found applications in numerous scientific fields and instruments, including the atomic force microscope (AFM), and as sensors to detect a wide range of chemical and biological species. The mechanical properties, in particular, the spring constant of these devices is crucial when quantifying adhesive forces, material properties of surfaces, and in determining deposited mass for sensing applications. A key component in the spring constant of a cantilever is the plan-view shape. In recent years, the trapezoidal plan-view shape has become available since it offers certain advantages to fast-scanning AFM and can improve sensor performance in fluid environments. Euler beam equations relating cantilever stiffness to the cantilever dimensions and Young’s modulus have been proven useful and are used extensively to model cantilever mechanical behaviour and calibrate the spring constant. In this work, we derive a simple correction factor to the Euler beam equation for a beam-shaped cantilever that is applicable to any cantilever with a trapezoidal plan-view shape. This correction factor is based upon previous analytical work and simplifies the application of the previous researchers formula. A correction factor to the spring constant of an AFM cantilever is also required to calculate the torque produced by the tip when it contacts the sample surface, which is also dependent on the plan-view shape. In this work, we also derive a simple expression for the torque for triangular plan-view shaped cantilevers and show that for the current generation of trapezoidal plan-view shaped AFM cantilevers, this will be a good approximation. We shall apply both these correction factors to determine Young’s modulus for a range of trapezoidal-shaped AFM cantilevers, which are specially designed for fast-scanning. These types of AFM probes are much smaller in size when compared to standard AFM probes. In the process of analysing the mechanical properties of these cantilevers, important insights are also gained into their spring constant calibration and dimensional factors that contribute to the variability in their spring constant.


2005 ◽  
Vol 475-479 ◽  
pp. 4097-4102 ◽  
Author(s):  
I. Kaplan-Ashiri ◽  
S.R. Cohen ◽  
K. Gartsman ◽  
R. Rosentsveig ◽  
V. Ivanovskaya ◽  
...  

The Young’s modulus of WS2 nanotubes is an important property for various applications. Measurements of the mechanical properties of individual nanotubes are challenging because of the small size of the tubes. Lately, measurements of the Young’s modulus by buckling of an individual nanotube using an atomic force microscope1 resulted in an average value of 171GPa. Tensile tests of individual WS2 nanotubes were performed experimentally using a scanning electron microscope and simulated tensile tests of MoS2 nanotubes were performed by means of a densityfunctional tight-binding (DFTB) based molecular dynamics (MD) scheme. Preliminary results for WS2 nanotubes show Young’s modulus value of ca.162GPa, tensile strength value of ca. 13GPa and average elongation of ca. 12%. MD simulations resulted in elongation of 19% for zigzag and 17% for armchair MoS2 single wall nanotubes. Since MoS2 and WS2 nanotubes have similar structures the same behavior is expected for both, hence there is a good agreement regarding the elongation of WS2 nanotubes between experiment and simulation.


2021 ◽  
pp. 1-8
Author(s):  
Di Chang ◽  
Takahiro Hirate ◽  
Chihiro Uehara ◽  
Hisataka Maruyama ◽  
Nobuyuki Uozumi ◽  
...  

Abstract


2008 ◽  
Vol 600-603 ◽  
pp. 867-870
Author(s):  
Gwiy Sang Chung ◽  
Ki Bong Han

This paper presents the mechanical properties of 3C-SiC thin film according to 0, 7, and 10 % carrier gas (H2) concentrations using Nano-Indentation. When carrier gas (H2) concentration was 10 %, it has been proved that the mechanical properties, Young’s Modulus and Hardness, of 3C-SiC are the best of them. In the case of 10 % carrier gas (H2) concentration, Young’s Modulus and Hardness were obtained as 367 GPa and 36 GPa, respectively. When the surface roughness according to carrier gas (H2) concentrations was investigated by AFM (atomic force microscope), when carrier gas (H2) concentration was 10 %, the roughness of 3C-SiC thin was 9.92 nm, which is also the best of them. Therefore, in order to apply poly 3C-SiC thin films to MEMS applications, carrier gas (H2) concentration’s rate should increase to obtain better mechanical properties and surface roughness.


2014 ◽  
Vol 627 ◽  
pp. 197-201 ◽  
Author(s):  
Cheng Chang Lien ◽  
Meng Chien Wu ◽  
Chyung Ay

The force-displacement curves of rat’s red blood cells (RBC) were measured by atomic force microscope (AFM) in this study, and the young’s modulus of RBC were calculated. The different speed and loads of probe on AFM was conducted to exam the effect of young’s modulus in RBC. Furthermore, the relationship between young’s modulus of RBC and different depth of indentation from force-displacement curves were investigated. The experimental results and analysis showed that when probe’s maximum load was 5 nN and the velocity was set for 1, 5, 10 and 20 μm/s, the young’s modulus of normal red blood cells for probe down measurements to AFM were 129.56 ± 42.80, 141.56 ± 31.15, 147.90 ± 24.35 and 149.69 ± 29.27 kPa, respectively. It represented that the young’s modulus of normal red blood cells depended on probe’s velocity. Then when probe’s velocity was 1 μm/s and the load was changed to 1, 5 and 10 nN, the young’s modulus of normal red blood cells were measured for 41.45 ± 22.64, 82.72 ± 53.99 and 202.40 ± 16.01 kPa, respectively. It represented that the young’s modulus of normal red blood cells depended on the probe’s load. On the other side, the results of force-displacement curves exam demonstrated that the deeper of probe indented in cells, the measured young’s modulus of normal red blood cells would be increased more.


Soft Matter ◽  
2018 ◽  
Vol 14 (16) ◽  
pp. 3192-3201 ◽  
Author(s):  
Srinivas Mettu ◽  
Qianyu Ye ◽  
Meifang Zhou ◽  
Raymond Dagastine ◽  
Muthupandian Ashokkumar

Atomic Force Microscopy (AFM) is used to measure the stiffness and Young's modulus of individual microcapsules that have a chitosan cross-linked shell encapsulating tetradecane.


Sign in / Sign up

Export Citation Format

Share Document