Using Experimental Data for Predicting Performance and Emissions of a Real Gas Turbine Plant

Author(s):  
Andrea Lazzaretto ◽  
Andrea Toffolo ◽  
Sebastiano Trolese

Precise performance evaluation at design and off-design operations is needed for a correct management of power plants. This need is particularly strong in gas turbine power plants which can quickly react to load variations and are very sensitive to ambient conditions. The paper aims at presenting a simple tool to determine the values of the thermodynamic quantities in each point of the plant and the overall plant performances of a real gas turbine plant. Starting from experimental data, a zero-dimensional model is developed which properly considers the effect of ambient conditions and water injection for pollutant abatement at different load settings under the action of the control system. An emission model taken from the literature is also included, after tuning on experimental data, to predict carbon monoxide and nitrogen oxide pollution.

2014 ◽  
Vol 659 ◽  
pp. 503-508
Author(s):  
Sorin Gabriel Vernica ◽  
Aneta Hazi ◽  
Gheorghe Hazi

Increasing the energy efficiency of a gas turbine plant can be achieved by exhaust gas heat recovery in a recovery boiler. Establishing some correlations between the parameters of the boiler and of the turbine is done usually based on mathematical models. In this paper it is determined from experimental point of view, the effectiveness of a heat recovery boiler, which operates together with a gas turbine power plant. Starting from the scheme for framing the measurement devices, we have developed a measurement procedure of the experimental data. For experimental data processing is applied the effectiveness - number of transfer unit method. Based on these experimental data we establish correlations between the recovery boiler effectiveness and the gas turbine plant characteristics. The method can be adapted depending on the type of flow in the recovery boiler.


Author(s):  
R. Yadav ◽  
P. Sreedhar Yadav

The major challenges before the design engineers of a gas turbine plant and its variants are the enhancement of power output, substantial reduction in NOx emission and improvement in plant thermal efficiency. There are various possibilities to achieve these objectives and humid air gas turbine cycle power plant is one of them. The present study deals with the thermodynamic study of humid air gas turbine cycle power plants based on first law. Using the modeling and governing equations, the parametric study has been carried out. The results obtained will be helpful in designing the humid air gas turbines, which are used as peaking units. The comparison of performance of humid air gas turbine cycle shows that it is superior to basic gas turbine cycle but inferior and more complex to steam injected cycle.


Author(s):  
G. E. Marin ◽  
B. M. Osipov ◽  
A. R. Akhmetshin

THE PURPOSE. The study is aimed at studying the effect of fuel gases of various component composition on the environmental performance of the GE 6FA gas turbine unit. Consider using hydrogen as primary sweat to minimize emissions and improve performance of the GE 6FA gas turbine. METHODS. To achieve this goal, the ASGRET (Automated system for gas-dynamic calculations of power turbomachines) software package was used. RESULTS. The article discusses promising directions for the utilization of CO2 using highly efficient technologies with further use or disposal. A mathematical model of a GE 6FA gas turbine unit, diagrams of changes in the main characteristics and the composition of emissions when operating on various types of fuel, including hydrogen, are presented. CONCLUSION. The studies carried out show that a change in the component composition of the gas affects the energy characteristics of the engine. The method for determining the quantitative composition of COx, NOx, SOx in the exhaust gases of a gas turbine plant is presented. The transition to the reserve fuel kerosene leads to an increase in the amount of emissions, which must be taken into account when designing systems for capturing harmful emissions with a dual-fuel fuel gas supply system. The use of hydrogen as a fuel for gas turbines allows to reduce not only the cost of fuel preparation, but also to minimize emissions and improve the performance of the gas turbine plant.


2021 ◽  
Vol 2(50) ◽  
Author(s):  
Viktor Gorbov ◽  
◽  
Sergey Movchan ◽  
Denis Solomonyuk ◽  
◽  
...  

The aim of this work is to determine the effect of the elements, which do not participate in heat transfer, on the mass of the regenerator of a gas turbine plant X, as well as to define the re-strictions that are imposed on the regenerator design based on the conditions of manufacturabil-ity, placement at the facility and transportability. This goal is achieved using an algorithm for finding rational geometric parameters of the heat exchange matrix with minimization of the re-generator mass by Newton's method. It has been determined that the mass of the heat exchange matrix can be 0.48–0.58 of the mass of the regenerator. This makes it necessary, even at the initial design stages, to take into account the effect of the above factors on the mass of the re-generator and the choice of the rational geometrical parameters. A significant result of the stud-ies performed is determination of the effect of dimensional restrictions and requirements for the shape of the regenerator to be increased in its mass. The values of the geometrical parameters of the heat exchange matrix were obtained, at which the mass of the regenerator takes on a mini-mum value. The significance of the work is that the obtained relationships between the mass of the regenerator and its geometry makes it possible to reduce the metal consumption of the regen-erator and the gas turbine plant, which allows designing the heat exchangers for power plants


2013 ◽  
Vol 17 (4) ◽  
pp. 1107-1117
Author(s):  
Mehaboob Basha ◽  
S.M. Shaahid ◽  
Luai Al-Hadhrami

A computational study to assess the performance of different gas turbine power plant configurations is presented in this paper. The work includes the effect of humidity, ambient inlet air temperature and types of fuels on gas turbine plant configurations with and without fogger unit. Investigation also covers economic analysis and effect of fuels on emissions. GT frames of various sizes/ratings are being used in gas turbine power plants in Saudi Arabia. 20 MWe GE 5271RA, 40 MWe GE-6561B and 70 MWe GE-6101FA frames are selected for the present study. Fogger units with maximum mass flow rate of 2 kg/s are considered for the present analysis. Reverse Osmosis unit of capacity 4 kg/s supplies required water to the fogger units. GT PRO software has been used for carrying out the analysis including; net plant output and net efficiency, break even electricity price and break even fuel LHV price etc., for a given location of Saudi Arabia. The relative humidity and temperature have been varied from 30 to 45 % and from 80 to 100? F, respectively. Fuels considered in the study are natural gas, diesel and heavy bunker oil. Simulated gas turbine plant output from GT PRO has been validated against an existing gas turbine plant output. It has been observed that the simulated plant output is less than the existing gas turbine plant output by 5%. Results show that variation of humidity does not affect the gas turbine performance appreciably for all types of fuels. For a decrease of inlet air temperature by 10 ?F, net plant output and efficiency have been found to increase by 5 and 2 %, respectively for all fuels, for GT only situation. However, for GT with Fogger scenario, for a decrease of inlet air temperature by 10 ?F, net plant output and efficiency have been found to further increase by 3.2 and 1.2 %, respectively for all fuels. For all GT frames with fogger, the net plant output and efficiency are relatively higher as compared to GT only case for all fuels. More specifically, net plant output and efficiency for natural gas are higher as compare to other fuels for all GT scenarios. For a given 70 MWe frame with and without fogger, break even fuel price and electricity price have been found to vary from 2.2 to 2.5 USD/MMBTU and from 0.020 to 0.0239 USD/kWh respectively. It has been noticed that turbines operating on natural gas emit less carbon relatively as compared to other fuels.


Author(s):  
M. Nixdorf ◽  
A. Prelipceanu ◽  
D. Hein

The purpose of this work is to investigate the benefits of some different ambient air conditioning methods for reducing the gas turbine intake air temperature in order to enhance the gas turbine power. As a reference case the combined heat and power plant of the campus area of the Technische Universita¨t Mu¨nchen in Garching is considered, which is equipped with an Allison KH501 Cheng Cycle gas turbine. Three novel technical possibilities of ambient air cooling and power augmentation are shown in detail (desiccant dehumidification and evaporative cooling, absorption chiller unit with air cooler, evaporative cooling at increased inlet air pressure). Based on site ambient conditions and measured yearly load lines for heat and electrical power connected with actual cost functions, the potential economic savings are worked out for the different technical modifications using ambient air cooling for power augmentation of the gas turbine plant. The economic operation lines for power and heat, supplied by the modified gas turbine plant, are calculated by a cost optimization system. The results are compared based on investment costs and economic savings by the extended annual electrical and thermal power production of the modified gas turbine plant.


Author(s):  
T. Schobeiri ◽  
H. Haselbacher

The design of modern gas turbines requires the predetermination of their dynamic behavior during transients of various kinds. This is especially true for air storage and closed cycle gas turbine plants. The present paper is an introduction to a computatational method which permits an accurate simulation of any gas turbine system. Starting with the conservation equations of aero/thermodynamics, the modular computer program COTRAN was developed, which calculates the transient behavior of individual components as well as of entire gas turbine systems. For example, it contains modules for compressors, turbines, combustion chambers, pipes etc. To demonstrate the effectiveness of COTRAN the shut-down tests of the air storage gas turbine plant Huntorf were simulated and results compared with experimental data. The agreement was found to be very good.


Sign in / Sign up

Export Citation Format

Share Document