A Study on Energy Optimum Algorithm of LEACH under Three-Dimensional Space

2014 ◽  
Vol 668-669 ◽  
pp. 1223-1226
Author(s):  
Yu Qian

With the constant enlargement of the range of application of wireless sensor network, extending wireless sensor network’ life cycle has attracted more and more attention under the circumstances of limited node energy. On account of three-dimensional space background for the environmental monitoring of high buildings, this thesis put forward an improved energy-saving optimum algorithm of LEACH: improving probability of high-energy node elected as cluster head during cluster head election; selecting a network with the minimum communication cost. The simulation experiment indicates that under the layout of three-dimensional space, improving algorithm makes the load of wireless sensor network more balancing, and extending network’ life cycle. what’ s more, simulation result, in a way, serves as theoretical basis for a further study on the life cycle of wireless sensor network.

2020 ◽  
Author(s):  
Hamid Reza Farahzadi ◽  
Mostafa Langarizadeh ◽  
Mohammad Mirhosseini ◽  
Seyed Ali Fatemi Aghda

AbstractWireless sensor network has special features and many applications, which have attracted attention of many scientists. High energy consumption of these networks, as a drawback, can be reduced by a hierarchical routing algorithm. The proposed algorithm is based on the Low Energy Adaptive Clustering Hierarchy (LEACH) and Quadrant Cluster based LEACH (Q-LEACH) protocols. To reduce energy consumption and provide a more appropriate coverage, the network was divided into several regions and clusters were formed within each region. In selecting the cluster head (CH) in each round, the amount of residual energy and the distance from the center of each node were calculated by the base station (including the location and residual energy of each node) for all living nodes in each region. In this regard, the node with the largest value had the highest priority to be selected as the CH in each network region. The base station calculates the CH due to the lack of energy constraints and is also responsible for informing it throughout the network, which reduces the load consumption and tasks of nodes in the network. The information transfer steps in this protocol are similar to the LEACH protocol stages. To better evaluate the results, the proposed method was implemented with LEACH LEACH-SWDN, and Q-LEACH protocols using MATLAB software. The results showed better performance of the proposed method in network lifetime, first node death time, and the last node death time.


2012 ◽  
Vol 155-156 ◽  
pp. 445-449
Author(s):  
Fu Cai Wan ◽  
Yu Ji Shen

Node positioning technology in wireless sensor network plays an important role in the whole network, and a lot of scholars engage in this field. According to the background that wireless sensor network is applied in Three-Dimensional space, an improved algorithm is proposed in this paper. The algorithm makes the average distance of each hop more rational through choosing the external anchor nodes. After the achievement of the unknown nodes positioning, initial positioning location would be corrected in order to get a higher positioning accuracy. Simulation results show that the accuracy of the improved algorithm is 13% higher than the traditional DV-Hop algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Meifang Wang ◽  
Zhange Liang

It is helpful to analyze volleyball spiking technology and improve spiking quality to extract volleyball spiking trajectory. This article studies the extraction method and teaching method of volleyball spiking trajectory based on a wireless sensor network. The acceleration sensor and gyroscope sensor are used to collect the spiking action state information of volleyball players. The collected information is transmitted to the PC terminal through the wireless sensor network, including physical layer, data link layer, network layer, transmission layer, and application layer, using the LEACH clustering routing protocol algorithm. In the PC terminal, the feedback filtering method is used to preprocess the received information and calculate the integral of each sensor node’s acceleration, connecting the spatial coordinates of each time to obtain the upper limb trajectory in three-dimensional space and realize the trajectory extraction of volleyball spike action. The experimental results show that the position error is less than 0.01 m and the speed error is less than 0.15 m/s. The application of this method in volleyball teaching can effectively improve the quality of volleyball teaching.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Aruna Pathak

In wireless sensor network, replacement of node’s battery is very tough task in hostile environments. Therefore, to maximize network lifetime is the ultimate solution. Dividing the sensing region of wireless sensor network into clusters is an excellent approach to gain high energy efficiency and to enhance lifetime of the network. On the other hand, heads of the cluster need additional energy because of additional work such as obtaining data from its member nodes, aggregation of their data, and finally sending it to the base station. To enhance the lifetime of these networks, proper selection of heads plays a vital role. In this paper, we propose proficient bee colony-clustering protocol (PBC-CP) which is based on artificial bee colony algorithm. In PBC-CP approach, we have taken important factors for selection of heads such as node’s energy, degree of node, and distance from base station to node. For transmitting the data from cluster head to base station, it chooses the energy-efficient path which further minimizes the energy consumption of sensor network. Simulation experiments show the effectiveness of our proposed approach.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Keyur Rana ◽  
Mukesh Zaveri

Large scale sensor networks can be efficiently managed by dividing them into several clusters. With the help of cluster heads, each cluster communicates using some routing schedule. It is essential to rotate the role of cluster heads in a cluster to distribute energy consumption if we do not have dedicated high energy cluster heads. Usually routing and cluster head selection for such networks have been separately solved. If cluster heads are selected with the consideration of routing and routing schedule is prepared with the consideration of selected cluster heads, it can help each other. We have proposed an integrated approach of cluster head selection and routing in two tier wireless sensor network (WSN) using Genetic Algorithm based cluster head selection with A-Star algorithm based routing method to extend life of WSN. This approach can lead to significant improvements in the network lifetime over other techniques.


Wireless sensor network environment based on limited resources technology. Energy is one of the most significant resources in such systems, so ideal utilization of energy is essential. A high energy efficient with trustable routingprotocol for Wireless_Sensor_Networks covered under this_paper. The protocol is trustworthy as far as data conveyance at the Base_Station. We assumed about portability in sensor nodes and in the base station. The proposed protocol depends on the cluster and hierarchical routing protocols. All clusters comprises of unique cluster-head-node and two-deputy-clusterhead-nodes, and several normal sensor-nodes. The cluster-head panel model introduced to optimize the re-clustering time and energy prerequisites. As consider the protocol trustworthiness, it lays finest exertion to guarantee a predetermined level of performance at the base-station. Contingent upon the network topology, transmit data from cluster head node to base station that done either by direct or indirect i.e. multi-hop way. Also, substitute ways are utilized for data transmission between a cluster head node and the base station. Thorough NS2 simulation-results delineate energy-efficiency, throughput, and delayed-lifetime of sensor-nodes affected by the proposedprotocol.


Sign in / Sign up

Export Citation Format

Share Document