The Design and Implementation of a Heterogeneous Multi-Core Security Chip Architecture Based on Shared Memory System

2014 ◽  
Vol 668-669 ◽  
pp. 1314-1318
Author(s):  
Lei Zhang ◽  
Ren Ping Dong ◽  
Chang Zhang ◽  
Ya Ping Yu

With the existence of traditional SOC chip, the encryption and decryption speed and low power cannot meet the computing needs of the modern diversity, then we present a heterogeneous multi-core system which designed based on shared memory on the Xilinx Virtex-5 platform. This paper is in-depth research about heterogeneous multi-core password architecture, static task partitioning, scheduling strategy and the communication mechanism between cores. The three cores systems are designed and builded based on shared memory to realize ZUC algorithm which generates a stream cipher on virtex-5 platform. The three microblaze cores are responsible for inter-core communication, the implementation of ZUC algorithm and articulating IC card to read keys. Through the design of three cores system, give full play to the hardware, software and computer architecture parallelism at all levels to improve the performance of the algorithm to achieve high performance green computing.

Pipelining is the concept of overlapping of multiple instructions to perform their operations to optimize the time and ability of hardware units. This paper presents the design and implementation of 6 stage pipelined architecture for High performance 64-bit Microprocessor without Interlocked Pipeline Stages (MIPS) based Reduced Instruction set computing (RISC) processor. In this work, combining efforts of pre-fetching unit, forwarding unit, Branch and Jump predicting unit, Hazard unit are used to reduce the hazards. Low power unit is used to minimize the power. Cache Memories, other devices and especially balancing pipeline stages optimize the Speed in this work. DDR4 SDRAM (Double Data Rate type4 Synchronous Dynamic Random Access Memory) controller is employed in this pipeline to achieve high-speed data transfers and to manage the entire system efficiently. Low power, Low delay Flip flops are used in pipeline registers that implicitly enhance the performance of the system. The proposed method provides better results compared to the existing models. The simulation and synthesis results of the proposed Architecture are evaluated by Xilinx 14.7 software and supporting graphs are plotted through MATLAB tool


2013 ◽  
Vol 22 (10) ◽  
pp. 1340036
Author(s):  
ZIBIN DAI ◽  
LONGMEI NAN ◽  
XUAN YANG ◽  
XIAONAN LI

By analyzing the operation characteristic of linear feedback shifter registers (LFSRs) in many public stream cipher algorithms and its bottleneck realized by general processor, each specific instruction and reconfigurable hardware cell are proposed in this paper, which can neatly execute LFSR computing operation in parallel with high performance. The LFSR instructions can sustain different operation data widths, different operating models. Instruction-level parallelism based on VLIW system structure and instruction inner parallelism by operating several steps at one time are exploited too. Corresponding reconfigurable hardware units to sustain the implementation of each instruction forcefully by configurating is also developed. The circuit can be used as an important accelerated unit in special processing for stream cipher.


Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


Author(s):  
Hiroyuki Hakoi ◽  
Ming Ni ◽  
Junichi Hashimoto ◽  
Takashi Sato ◽  
Shinji Shimada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document