First-Principles Study on Optical Properties of Cd-Doped Single-Walled (8, 0) ZnO Nanotube

2014 ◽  
Vol 668-669 ◽  
pp. 27-30
Author(s):  
Yi Wu ◽  
Jian Cheng Huang ◽  
You Chao Cui ◽  
Shu Kai Zheng

The band structures, density of states, and absorption spectra of pure and Cd doped single-walled (8, 0) ZnO nanotubes are calculated using first-principles based on density functional theory. The calculation results show that the import of Cd leads a remarkable decrease to the forbidden bandwidth of ZnO. Consequently, more electrons in the valence band can be motivated to the conduction band by the visible light, which results in a further enhancement of visible light absorption and a wider absorption range.

2009 ◽  
Vol 79-82 ◽  
pp. 1245-1248 ◽  
Author(s):  
Pei Lin Han ◽  
Xiao Jing Wang ◽  
Yan Hong Zhao ◽  
Chang He Tang

Electronic structure and optical properties of non-metals (N, S, F, P, Cl) -doped cubic NaTaO3 were investigated systematically by density functional theory (DFT). The results showed that the substitution of (N, S, P, Cl) for O in NaTaO3 was effective in narrowing the band-gap relative to the F-doped NaTaO3. The larger red shift of the absorption edge and the higher visible light absorption at about 520 nm were found for the (N and P)-doped NaTaO3. The excitation from the impurity states to the conduction band may account for the red shift of the absorption edge in an electron-deficiency non-metal doped NaTaO3. The obvious absorption in the visible light region for (N and P)-doped NaTaO3 provides an important guidance for the design and preparation of the visible light photoactive materials.


2018 ◽  
Vol 32 (14) ◽  
pp. 1850178 ◽  
Author(s):  
Xuefeng Lu ◽  
Xu Gao ◽  
Junqiang Ren ◽  
Cuixia Li ◽  
Xin Guo ◽  
...  

Bandgap tailoring of [Formula: see text]-Si3N4 is performed by single and co-doping by using density functional theory (DFT) of PBE functional and plane-wave pseudopotential method. The results reveal that a direct bandgap transfers into an indirect one when single-doped with As element. Also, a considerate decrease of bandgap to 0.221 eV and 0.315 eV is present for Al–P and As–P co-doped systems, respectively, exhibiting a representative semiconductor property that is characteristic for a narrower bandgap. Compared with other doped systems, Al-doped system with formation energy of 2.67 eV is present for a more stable structure. From charge density difference (CDD) maps, it is found that the blue area between co-doped atoms increases, illustrating an enhancement of covalent property for Al–P and Al–As bonds. Moreover, a slightly obvious “Blue shift” phenomenon can be obtained in Al, Al–P and Al–As doped systems, indicating an enhanced capacity of responses to light, which contributes to the insight for broader applications with regard to photoelectric devices.


2014 ◽  
Vol 900 ◽  
pp. 203-208 ◽  
Author(s):  
Ting Ting Shao ◽  
Fu Chun Zhang ◽  
Wei Hu Zhang

The structural, electronic, and optical properties of rutile-type SnO2 are studied by plane-wave pseudopotential density functional theory (DFT) with GGA, LDA, B3LYP and PBE0 respectively. The computing results show that the band gap getting from PBE0 and B3LYP is much more consistent with the available experimental data than that from GGA and LDA, no matter what the latter use ultra-soft pseudopotential or norm conserving pseudopotential. However, the density of state, real part and imaginary part of dielectric function calculating from every type is basically similar in qualitative analysis.


RSC Advances ◽  
2014 ◽  
Vol 4 (96) ◽  
pp. 53570-53574 ◽  
Author(s):  
Yin Wei ◽  
Hongjie Wang ◽  
Xuefeng Lu ◽  
Jiangbo Wen ◽  
Min Niu ◽  
...  

Electronic structure and optical properties of silicon nitride adsorbed by rare earths are explored by density functional theory.


2016 ◽  
Vol 4 (42) ◽  
pp. 10082-10089 ◽  
Author(s):  
Xianping Chen ◽  
Xiang Sun ◽  
D. G. Yang ◽  
Ruishen Meng ◽  
Chunjian Tan ◽  
...  

The structure along with the electronic and optical properties of a SiGe/BN monolayer heterostructure were theoretically researched using density functional theory calculations.


RSC Advances ◽  
2017 ◽  
Vol 7 (83) ◽  
pp. 52449-52455 ◽  
Author(s):  
Qiang Zhao ◽  
Zheng Zhang ◽  
Xiaoping Ouyang

We investigated the effects of high pressure on the electronic structure and optical properties of a CsI crystal through a first-principles calculation method based on density functional theory.


RSC Advances ◽  
2016 ◽  
Vol 6 (56) ◽  
pp. 50867-50873 ◽  
Author(s):  
Golibjon R. Berdiyorov ◽  
Mohamed El-Amine Madjet

Optoelectronic properties of penta-graphene, penta-SiC2 and penta-CN2 are studied using density functional theory. Penta-SiC2 shows enhanced electronic transport and optical properties compared to the other systems.


RSC Advances ◽  
2021 ◽  
Vol 11 (26) ◽  
pp. 16040-16050
Author(s):  
Ting Yu ◽  
He Zhang ◽  
Dan Li ◽  
Yanwu Lu

In this paper, we investigated the electronic and optical properties of silicene on GaAs(111) substrates (silicene/HGaAs) on the basis of first-principles density functional theory.


2021 ◽  
pp. X
Author(s):  
Hongbo TANG ◽  
Qiuyue LI ◽  
Jian ZHOU ◽  
Lihua XIAO ◽  
Ping PENG

Received 03 January 2020; accepted 17 June 2020 We have investigated the optical properties of La (0, 0.125, 0.250) doped YB6 by means of first-principles calculations within the framework of density functional theory. It was found that electronic and optical properties of YB6 crystals varied remarkably when Y atoms were replaced with La atoms. Furthermore, with increasing content of La in YB6 crystals from 12.5 % to 25 % reflectivity and absorption coefficient of near infrared light decreased obviously, while the transmittance was enhanced.


2014 ◽  
Vol 21 (06) ◽  
pp. 1450087 ◽  
Author(s):  
XIAOLIANG FANG ◽  
XIAOLI FAN ◽  
RUNXIN RAN ◽  
PIN XIAO

The nondissociative and dissociated adsorptions of 4-methylbenzenethiol (4-MBT) and 4-ethylbenzenethiol (4-EBT) on Au (111) surface were studied by applying the first-principles method based on density functional theory. The effects of coverage and vdW interactions on adsorptions were investigated. Adsorption energies and tilt angles of both 4-MBT and 4-EBT decrease with the increase of the coverage, and vdW interactions can affect the adsorption configuration and energy. More importantly, in the case of 4-EBT adsorption, we have studied the effects of ethyl group's orientation on the adsorption configuration and energy. Calculation results show that ethyl group's orientation has little effect on the adsorption energy, but changes the tilt angle by around 7°. Our calculations provide a deeper elucidation of the observed adsorption configuration for 4-EBT on Au (111).


Sign in / Sign up

Export Citation Format

Share Document