Start-Up Characteristics of Biological Aerated Filter with Composite Steel Slag Media for Nitrogen and Phosphorus Removal

2014 ◽  
Vol 675-677 ◽  
pp. 939-942 ◽  
Author(s):  
Zhi Liu ◽  
Li Ping Qiu ◽  
Li Xin Zhang

The treatment performance and biofilm development of the start-up stage in an up-flow Biological Aerated Filter (BAF) with composite steel slag media is investigated, while the operating conditions is HRT 2h, temperature 23-27°C, DO 3-5mg/L. The results showed that the composite steel slag media BAF could be secussfuly operated in a short time, while the phosphorus could be removed 90% in 8 days as well as the ammonia nitrogen and COD could be removed 80% in 25 days after the beginning of reactor start-up. At the same time, the biofilm on the carrier could be observed and a lot of protozoa population, such as Rotifera, Vorticellidae and Parameciidae, could be characteristiced with optical microscope in the BAF system. It is conclued that the operation of the composite steel slag media BAF for nitrogen and phosphorus removal could be carried out quickly and conveniently, and provided a unique advantage for the future application.

2011 ◽  
Vol 63 (5) ◽  
pp. 885-890 ◽  
Author(s):  
Q. Chen ◽  
L. Qu ◽  
G. Tong ◽  
J. Ni

To improve the efficiency of low-strength domestic wastewater treatment, an immobilised-microorganism biological aerated filter (I-BAF) was established for simultaneous carbon, nitrogen and phosphorus removal. The I-BAF performance was systematically evaluated under continuous and intermittent aeration modes. At the optimal condition with an intermittent aeration control schedule of 2 h on/1 h off, the maximum removal rates of COD, NH4+-N, TN and P were 82.54%, 94.83%, 51.85% and 61.49%, respectively, and the corresponding averaged effluents could meet the first class standards of China. Further analysis of PCR-DGGE profile revealed that members of the gamma and alpha proteobacterium bacterial groups were probably responsible for the nitrogen and phosphorus removal. The I-BAF system showed excellent performance in carbon and nutrients removal, which provided a cost-effective solution for the treatment of low-strength domestic wastewater.


2013 ◽  
Vol 740 ◽  
pp. 805-808
Author(s):  
Miao Wan Li ◽  
Yan Zhen Yu ◽  
Yan Feng ◽  
Lei Cheng

Use molecular ecology technology to analyze bacteria populations in biofilm, which has a very important significance for effective sewage treatment and improvement of nitrogen and phosphorus removal rate. This article described RFLP, SSCP, FISH etc., brought together the research results at home and abroad, broadened the idea of exploring the diversity of microorganisms, the structure and distribution, as well as the dynamic in BAF.


2011 ◽  
Vol 374-377 ◽  
pp. 1013-1016
Author(s):  
Hui Yang ◽  
Yu Zhang ◽  
Yue Xu

Abstract. The paper aims to study the fast start-up of anaerobic-aerobic-anoxic-aerobic sequencing batch reactor, with domestic sewage as treating object, to solve the problem of SBR that can be used for denitrification or dephosphorization independently and to realize simultaneous nitrogen and phosphorus removal in a single SBR system. Phosphorus accumulating organisms were enriched at the anaerobic condition for 2h/aerobic for 3h after activated sludge were inoculated. Then denitrifying polyphosphate-accumulating organisms were enriched by inserting an anoxic phase into the aerobic phase. The lengths of anaerobic time, anoxic time and aerobic time were adjusted and the nitrogen and phosphorus removal effect of (AO)2SBR system were observed. The (AO)2SBR system was started successfully with 80d of training and domesticating. The nitrogen and phosphorus removal effect was performed preferably at the condition of anaerobic(2h)-aerobic(1.5h)-anoxic(1.5h)-aerobic(0.5h). The removal rate of COD, NH4+-N, TN and TP reached 90%, 97%, 88% and 92% respectively. And 33% of energy was saved when aerobic time was shortened from 3h to 2h, while the treating effect dropped off rarely. The results show that (AO)2SBR is applicable for simultaneous nitrogen and phosphorus removal, and the effluent water quality meets the first level B criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant(GB 18918-2002). The system can also reach the aim of saving energy and providing theoretical basis for the nitrogen and phosphorus removal in single SBR systems.


2006 ◽  
Vol 1 (4) ◽  
Author(s):  
Dong Wenyi ◽  
Du Hong ◽  
Zou Li-an ◽  
Miao Jia ◽  
Wang Baozhen

The operational retrofits to improve nitrogen and phosphorus removal of AB process treating low concentration municipal wastewater in Luofang WWTP, in Shenzhen China, are described in this paper. The problems occurred during the 5-year operation since its start-up and the specific efforts devoted to the troubleshooting are presented roundly as well. As a result, a steady and efficient performance of AB process can be assured and a novel method of operation to improve phosphorus and nitrogen removal is developed. With the effluent quality of TN <14mg/L, NH3-N<2.5mg/L and TP<1.0mg/L, the operational retrofits are surely of practical value to those facilities that apply AB process and are poorly operated.


2017 ◽  
Vol 14 (2) ◽  
pp. 99-106 ◽  
Author(s):  
Zhengan Zhang ◽  
Shulin Pan ◽  
Fei Huang ◽  
Xiang Li ◽  
Juanfang Shang ◽  
...  

2004 ◽  
Vol 31 (4) ◽  
pp. 349-356
Author(s):  
Li Na ◽  
Li Zhidong ◽  
Li Guode ◽  
Wang Yan ◽  
Wu Shiwei ◽  
...  

2000 ◽  
Vol 41 (9) ◽  
pp. 139-145
Author(s):  
R. Kayser

The German design guideline A 131 “Design of single stage activated sludge plants” was amended in 1999. The main changes of the guideline from 1991 are outlined. The design procedure for plants with nitrogen and phosphorus removal is presented.


Sign in / Sign up

Export Citation Format

Share Document