Fine Damage Identification Method of Transmission Tower Based on Concurrent Multi-Scale Modeling

2014 ◽  
Vol 680 ◽  
pp. 374-378
Author(s):  
Chun Cheng Liu ◽  
Shang Yu Hou ◽  
Wen Qiang Li ◽  
Zhao Wen He

In order to study the damage problem caused by the transmission tower fatigue cracks and bolt pretightening force loss ,this paper proposes a transmission tower damage identification method based on concurrent multi-scale model, namely establish solid model on nodes of fatigue crack and bolt looseness based on large scale model., subdividing elements size. Take a practical engineering 500kV transmission towers as an example to establish a concurrent multi-scale models. This paper simulates 8 kinds of conditions including bolt pretightening force loss and angle steel crack, research shows that the sum of wavelet packet energy curvature difference can effectively identify minute damage, and then get the function relation between damage level and damage index with no noise interference, also this provides a theoretical basis for it as actual damage monitoring indicators index.

2014 ◽  
Vol 680 ◽  
pp. 383-386
Author(s):  
Chun Cheng Liu ◽  
Wen Qiang Li ◽  
Shang Yu Hou ◽  
Zhao Wen He ◽  
Fan Gao

In order to analyze the mechanical properties of UHVDC transmission tower joint accurately, a multi-scale finite element model of the transmission tower is established with the interface between solid element model and beam element model. The model is applied to the nonlinear analysis of a key joint in a test condition .The results show that the tower destruction is caused by buckling behavior of the cross bracing member and the multi-scale model can simulate the force state of gusset-plate and the connected members realistically, which is superior to traditional large scale models. The analysis coincides with the experiment well and provides references for the transmission tower design.


2015 ◽  
Vol 9 (1) ◽  
pp. 570-576 ◽  
Author(s):  
Can He ◽  
Jianchun Xing ◽  
Juelong Li ◽  
Wei Qian ◽  
Xun Zhang

Excitation makes a great influence on the wavelet energy distribution of the response signal, this deficiency leads that the traditional structural damage identification method based on wavelet energy has a low precision. In order to solve this problem, a new structural damage identification method based on wavelet packet energy entropy (WPEE) of impulse response is presented in this paper. Firstly, natural excitation technique (NExT) is adopted to extract structural impulse response. Then, WPEE of the impulse response is computed, and the change rate of WPEE is used to construct the structural damage index. An experiment of damage identification on a pile structure is provided to verify the effectiveness of the proposed method. Experiment results show that this method can accurately identify the single damage and multi-damage.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 239
Author(s):  
Tongfa Deng ◽  
Jinwen Huang ◽  
Maosen Cao ◽  
Dayang Li ◽  
Mahmoud Bayat

Curved beam bridges, whose line type is flexible and beautiful, are an indispensable bridge type in modern traffic engineering. Nevertheless, compared with linear bridges, curved beam bridges have more complex internal forces and deformation due to the curvature; therefore, this type of bridge is more likely to suffer damage in strong earthquakes. The occurrence of damage reduces the safety of bridges, and can even cause casualties and property loss. For this reason, it is of great significance to study the identification of seismic damage in curved beam bridges. However, there is currently little research on curved beam bridges. For this reason, this paper proposes a damage identification method based on wavelet packet norm entropy (WPNE) under seismic excitation. In this method, wavelet packet transform is adopted to highlight the damage singularity information, the norm entropy of wavelet coefficient is taken as a damage characteristic factor, and then the occurrence of damage is characterized by changes in the damage index. To verify the feasibility and effectiveness of this method, a finite element model of Curved Continuous Rigid-Frame Bridges (CCRFB) is established for the purposes of numerical simulation. The results show that the damage index based on WPNE can accurately identify the damage location and characterize the severity of damage; moreover, WPNE is more capable of performing damage location and providing early warning than the method based on wavelet packet energy. In addition, noise resistance analysis shows that WPNE is immune to noise interference to a certain extent. As long as a series of frequency bands with larger correlation coefficients are selected for WPNE calculation, independent noise reduction can be achieved.


2021 ◽  
pp. 016173462110425
Author(s):  
Jianing Xi ◽  
Jiangang Chen ◽  
Zhao Wang ◽  
Dean Ta ◽  
Bing Lu ◽  
...  

Large scale early scanning of fetuses via ultrasound imaging is widely used to alleviate the morbidity or mortality caused by congenital anomalies in fetal hearts and lungs. To reduce the intensive cost during manual recognition of organ regions, many automatic segmentation methods have been proposed. However, the existing methods still encounter multi-scale problem at a larger range of receptive fields of organs in images, resolution problem of segmentation mask, and interference problem of task-irrelevant features, obscuring the attainment of accurate segmentations. To achieve semantic segmentation with functions of (1) extracting multi-scale features from images, (2) compensating information of high resolution, and (3) eliminating the task-irrelevant features, we propose a multi-scale model with skip connection framework and attention mechanism integrated. The multi-scale feature extraction modules are incorporated with additive attention gate units for irrelevant feature elimination, through a U-Net framework with skip connections for information compensation. The performance of fetal heart and lung segmentation indicates the superiority of our method over the existing deep learning based approaches. Our method also shows competitive performance stability during the task of semantic segmentations, showing a promising contribution on ultrasound based prognosis of congenital anomaly in the early intervention, and alleviating the negative effects caused by congenital anomaly.


2016 ◽  
Vol 16 (1) ◽  
pp. 3-23 ◽  
Author(s):  
Yongfeng Xu ◽  
Weidong Zhu

Mode shapes (MSs) have been extensively used to detect structural damage. This paper presents a new non-model-based damage identification method that uses measured MSs to identify damage in plates. A MS damage index (MSDI) is proposed to identify damage near regions with consistently high values of MSDIs associated with MSs of different modes. A MS of a pseudo-undamaged plate can be constructed for damage identification using a polynomial of a properly determined order that fits the corresponding MS of a damaged plate, if the associated undamaged plate is geometrically smooth and made of materials that have no stiffness and mass discontinuities. It is shown that comparing a MS of a damaged plate with that of a pseudo-undamaged plate is better for damage identification than with that of an undamaged plate. Effectiveness and robustness of the proposed method for identifying damage of different positions and areas are numerically investigated using different MSs; effects of crucial factors that determine effectiveness of the proposed method are also numerically investigated. Damage in the form of a machined thickness reduction area was introduced to an aluminum plate; it was successfully identified by the proposed method using measured MSs of the damaged plate.


2009 ◽  
Vol 413-414 ◽  
pp. 71-78
Author(s):  
Xiao Qiang Chen ◽  
Hong Ping Zhu ◽  
Dan Sheng Wang

In this paper, a new time-domain method for detecting structural local damage has been developed, which is based on the measured strain signals. The “pseudo strain energy density (PSED)” is defined and used to build two major damage indexes, the “average pseudo strain energy density” (APSED) and the “average pseudo strain energy density changing rate” (APSEDR). A probability and mathematical statistics technique is utilized to derive a standardized damage index. Afterwards, these indexes are used to establish the damage identification strategies for beam structures and plate structures respectively. Furthermore, the wavelet packet transform is used to pre-process the measured dynamic strain signals. Then, the effectivity of the new damage identification method is confirmed by numerical simulations. Finally, a laboratory beam model experiment is conducted to verify this method examine the feasibility and applicability of the new method.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Qian Xu

To eliminate the influence of excitation on the wavelet packet frequency band energy spectrum (ES), ES is acquired via wavelet packet decomposition of a virtual impulse response function. Based on ES, a character frequency band vector spectrum and damage eigenvector spectrum (DES) are created. Additionally, two damage identification indexes, the energy ratio standard deviation and energy ratio variation coefficient, are proposed. Based on the damage index, an updated damage identification method for retaining wall structures is advanced. The damage state of a retaining wall can be diagnosed through DES, the damage location can be detected through the damage index trend surface, and the damage intensity can be identified by establishing a quantitative relationship between the damage intensity and damage index. To verify the feasibility and validity of this damage identification method, a vibration test on a pile plate retaining wall is performed. Test results demonstrate that it can distinguish whether the retaining wall is damaged, and the location of partial damage within the retaining wall can be easily detected; in addition, the damage intensity of the wall can also be identified validly. Consequently, this damage identification theory and method may be used to identify damage within retaining wall structures.


2014 ◽  
Vol 532 ◽  
pp. 457-460
Author(s):  
Hong Chun Sun ◽  
Ling Ling Zhang ◽  
Bei Ming Zhao

The traditional identification method of surface crack has some shortcomings such as detection equipment complex, high requirements for operator and not suitable for large-scale structure inspection, vibration method is applied to identify surface crack in steel rods in this paper, using the method of calculating modal analysis combined with time-frequency wavelet analysis. The research on damage identification is performed on steel rods with different deep crack. The research results show that the accurate damage location can be judged by wavelet modulus maximum and the quantitative analysis of single crack identification can be achieved by constructing mathematical expressions of a single crack damage degree and damage index Lipschitz index. The research would province some guidance for engineering applications.


2011 ◽  
Vol 243-249 ◽  
pp. 699-703
Author(s):  
Ling Zhou ◽  
Hua Cheng ◽  
Zhong Gang Wang ◽  
Yun Bo Lei

The analytical signal for time-frequency analysis is obtained by Hilbert transform from free vibration response under suddenly unloading. Mathematical deduction of Wigner-Ville Distribution (WVD) auto-terms reveals the function relation between WVD auto-terms and modal parameters. A new method based on the amplitude curvature of WVD auto-terms (WAC) is then forwarded for damage identification of transmission tower. An elastic model of transmission tower with 1/35 scale and 5.2 m height has been designed and manufactured to verify the proposed method, the model has been tested in the laboratory for acceleration response under suddenly unloading, and essential dynamic characteristics of the scale model is also compared with that of its prototype tower. The damage identification test of the model is then carried out. Totally three cases, related with chord rod weakening, flank rods failures, different damage degree and position, are tested to testify the proposed damage identification index.


Sign in / Sign up

Export Citation Format

Share Document