Stability and Control of Tooling System for High-Speed Machining

2014 ◽  
Vol 684 ◽  
pp. 375-380
Author(s):  
Deng Sheng Zheng ◽  
Jian Chen ◽  
D.F. Tao ◽  
L. Lv ◽  
Gui Cheng Wang

Tooling system for high-speed machining is one of the key components of high-end CNC machine , its stability and reliability directly affects the quality and performance of the machine. Based on the finite element method, developing a 3D finite model of high-speed machining tool system, studying on the stability of the high Speed machining tool from the natural frequency by the method of modal analysis. Analysis the amount of the overhang and clamping of the tooling , different shank taper interference fit and under different speed conditions, which affects the natural frequency of high-speed machining tool system. Proposed to the approach of improving system stability, which also provides a theoretical basis for the development of new high-speed machining tool system.

2011 ◽  
Vol 130-134 ◽  
pp. 970-975
Author(s):  
Xiang Long Wen ◽  
Cao Cao

In the high-speed, gyroscopic effects of the flywheel rotor greatly influence the rotor stability. The pole-zero points move to right of s-plane and the damping terms of the pole points become smaller. The stability of the system will get worse with the increasing of rotor speed when the traditional decentralized PD controller is used only. In the paper, a cross-feedback control with decentralized PD control is used for compensating gyroscopic effect. The simulation results show that the system stability is better using the cross-feedback control with decentralized PD control than using the traditional decentralized PD control.


Author(s):  
Ahmad A. Smaili ◽  
Muhammad Sannah

Abstract A major hindrance to dynamics and control of flexible robot manipulators is the deficiency of its inherent damping. Damping enhancement, therefore, should result in lower vibration amplitudes, shorter settling times, and improvement of system stability. Since the bulk of robot vibrations is attributed to joint compliance, it is a prudent strategy to design joints with sufficient inherent damping. In this article, a method is proposed to estimate critical damping at each joint and identify the joint that should be targeted for design with sufficient built-in damping. The target joint identification process requires that a n-joint robot system is divided into n-subsystems. Subsystem i includes the compliance of joint i and the inertia of the succeeding links, joint mechanisms, and payload. An equivalent single degree of freedom torsional model is devised and the natural frequency and critical damping is evaluated for each subsystem. The estimated critical damping at the joints are used to determine the elastodynamic response of the entire robot system from a model that includes joint compliance, shear deformation, rotary inertia, and geometric stiffness. The response revealed the following conclusion: The joint of the manipulator that would result in lower amplitudes of vibrations and shorter settling times when designed with sufficient built-in damping is the one that renders a subsystem whose natural frequency is the lowest of all subsystems comprising the robot.


Robotica ◽  
2020 ◽  
pp. 1-13
Author(s):  
Xiong Lu ◽  
Beibei Qi ◽  
Hao Zhao ◽  
Junbin Sun

SUMMARY Rendering of rigid objects with high stiffness while guaranteeing system stability remains a major and challenging issue in haptics. Being a part of the haptic system, the behavior of human operators, represented as the mechanical impedance of arm, has an inevitable influence on system performance. This paper first verified that the human arm impedance can unconsciously be modified through imposing background forces and resist unstable motions arising from external disturbance forces. Then, a reliable impedance tuning (IT) method for improving the stability and performance of haptic systems is proposed, which tunes human arm impedance by superimposing a position-based background force over the traditional haptic workspace. Moreover, an adaptive IT algorithm, adjusting the maximum background force based on the velocity of the human arm, is proposed to achieve a reasonable trade-off between system stability and transparency. Based on a three-degrees-of-freedom haptic device, maximum achievable stiffness and transparency grading experiments are carried out with 12 subjects, which verify the efficacy and advantage of the proposed method.


Author(s):  
Thi-Mai-Phuong Dao

Maintaining the rotational speed of synchronous generators in a hydropower plant is a vital control strategy in power system stability and operation. It is because such rotational speed is proportional to the output frequency of the synchronous generator, thereby it strongly affects the stability of the electric power grid. This paper presents a study regarding the modelling and control of a hydropower plant to maintain the generator speed. This study is divided into two main parts. A well-used model of an isolated hydropower plant is established in this study at first; then two controllers including conventional PI and intelligent fuzzy logic regulators are investigated to speed control of the generator. Simulations implemented in MATLAB/Simulink package demonstrate effectiveness and feasibility of the proposed speed controllers.


2022 ◽  
Vol 355 ◽  
pp. 03037
Author(s):  
Rongyong Zhao ◽  
Ping Jia ◽  
Yan Wang ◽  
Cuiling Li ◽  
Yunlong Ma ◽  
...  

In public places, it is significant to analyze the stability of the crowd which can support the crowd management and control, and protect the evacuees safely and effectively. The numerical analysis method of system stability based on Lyapunov theory suffers problems that it is difficult to avoid random errors in the initialization of pedestrian density and velocity, as well as cumulative errors due to time increasing, limiting its application. This study adopts a complementary model of theoretical numerical analysis and machine vision with a parallel convolutional neural network (CNN) model. It proposes an approach of stability analysis and closed-loop verification for crowd merging systems. Thereby, this research provides theoretical and methodological support for planning of the functional layout of crowd flow in public crowd-gathering places and the control measures for stable crowd flow.


Author(s):  
Kevin B. Fite ◽  
Michael Goldfarb

This paper presents an architecture and control methodology for a multi-degree-of-freedom teleoperator system. The approach incorporates impedance control of the telemanipulator pair and formulates the system as a single feedback loop encompassing the human operator, telemanipulator, and remote environment. In so doing, multivariable Nyquist-like techniques are used to design compensation for enhanced stability robustness and performance. A measure of the transparency exhibited by the multivariable teleoperator system is attained using matrix singular values. The approach is experimentally demonstrated on a three degree-of-freedom scaled telemanipulator pair with a highly coupled environment. Using direct measurement of the power delivered to the operator to assess the system’s stability robustness, along with the proposed measure of multivariable transparency, the loop-shaping compensation is shown to improve the stability robustness by a factor of almost two and the transparency by more than a factor of five.


2018 ◽  
Vol 211 ◽  
pp. 02007 ◽  
Author(s):  
Alexander Taratorkin ◽  
Victor Derzhanskii ◽  
Igor Taratorkin

This paper investigates stability of the dynamic process of gear shift in the vehicle transmission with the input shapers (IS) taking in consideration uncertainty of the natural frequency of the mechanical system. The proposed control algorithm increases the stability of the researched system with variation of its elastic and inertial parameters. The control law with guaranteed asymptotic stability is obtained for full load of the vehicle when the all-wheel drive is turned on. The monitoring of the state and performance of the required parameters for the regulation of input shapers are tested by means of numerical simulation. Analyzing the results it is established that the best stability is reached by the adaptive setting of the input shapers in accordance with controlled value of the natural frequency of the lowest single-node mode.


Sign in / Sign up

Export Citation Format

Share Document