A Human Arm’s Mechanical Impedance Tuning Method for Improving the Stability of Haptic Rendering

Robotica ◽  
2020 ◽  
pp. 1-13
Author(s):  
Xiong Lu ◽  
Beibei Qi ◽  
Hao Zhao ◽  
Junbin Sun

SUMMARY Rendering of rigid objects with high stiffness while guaranteeing system stability remains a major and challenging issue in haptics. Being a part of the haptic system, the behavior of human operators, represented as the mechanical impedance of arm, has an inevitable influence on system performance. This paper first verified that the human arm impedance can unconsciously be modified through imposing background forces and resist unstable motions arising from external disturbance forces. Then, a reliable impedance tuning (IT) method for improving the stability and performance of haptic systems is proposed, which tunes human arm impedance by superimposing a position-based background force over the traditional haptic workspace. Moreover, an adaptive IT algorithm, adjusting the maximum background force based on the velocity of the human arm, is proposed to achieve a reasonable trade-off between system stability and transparency. Based on a three-degrees-of-freedom haptic device, maximum achievable stiffness and transparency grading experiments are carried out with 12 subjects, which verify the efficacy and advantage of the proposed method.

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Samuel F. Asokanthan ◽  
Soroush Arghavan ◽  
Mohamed Bognash

Effect of stochastic fluctuations in angular velocity on the stability of two degrees-of-freedom ring-type microelectromechanical systems (MEMS) gyroscopes is investigated. The governing stochastic differential equations (SDEs) are discretized using the higher-order Milstein scheme in order to numerically predict the system response assuming the fluctuations to be white noise. Simulations via Euler scheme as well as a measure of largest Lyapunov exponents (LLEs) are employed for validation purposes due to lack of similar analytical or experimental data. The response of the gyroscope under different noise fluctuation magnitudes has been computed to ascertain the stability behavior of the system. External noise that affect the gyroscope dynamic behavior typically results from environment factors and the nature of the system operation can be exerted on the system at any frequency range depending on the source. Hence, a parametric study is performed to assess the noise intensity stability threshold for a number of damping ratio values. The stability investigation predicts the form of threshold fluctuation intensity dependence on damping ratio. Under typical gyroscope operating conditions, nominal input angular velocity magnitude and mass mismatch appear to have minimal influence on system stability.


2014 ◽  
Vol 684 ◽  
pp. 375-380
Author(s):  
Deng Sheng Zheng ◽  
Jian Chen ◽  
D.F. Tao ◽  
L. Lv ◽  
Gui Cheng Wang

Tooling system for high-speed machining is one of the key components of high-end CNC machine , its stability and reliability directly affects the quality and performance of the machine. Based on the finite element method, developing a 3D finite model of high-speed machining tool system, studying on the stability of the high Speed machining tool from the natural frequency by the method of modal analysis. Analysis the amount of the overhang and clamping of the tooling , different shank taper interference fit and under different speed conditions, which affects the natural frequency of high-speed machining tool system. Proposed to the approach of improving system stability, which also provides a theoretical basis for the development of new high-speed machining tool system.


1999 ◽  
Vol 122 (4) ◽  
pp. 803-812 ◽  
Author(s):  
Jonghoon Park ◽  
Wankyun Chung

Industrial manipulators are under various limitations against high quality motion control; for example, both frictional and dynamic disturbances should be dealt with a simple PID control structure. A robust linear PID motion controller, called the reference error feedback (REF), is proposed, which solves the nonlinear L2-gain attenuation control problem for robotic manipulators. The stability, robustness, and performance tuning of the proposed controller are analyzed. Making use of the fact that the single parameter of the induced L2-gain γ controls the performance with stability attained, we propose a simple and stable method of performance tuning called “the square law.” The analytical results are verified through experiments of a six-degrees-of-freedom industrial manipulator. [S0022-0434(00)00104-0]


2018 ◽  
Vol 15 (1) ◽  
pp. 172988141875577 ◽  
Author(s):  
Jorge Curiel Godoy ◽  
Ignacio Juárez Campos ◽  
Lucia Márquez Pérez ◽  
Leonardo Romero Muñoz

This article presents the principles upon which a new nonanthropomorphic biped exoskeleton was designed, whose legs are based on an eight-bar mechanism. The main function of the exoskeleton is to assist people who have difficulty walking. Every leg is based on the planar Peaucellier–Lipkin mechanism, which is a one degree of freedom linkage. To be used as a robotic leg, the Peaucellier–Lipkin mechanism was modified by including two more degrees of freedom, as well as by the addition of a mechanical system based on toothed pulleys and timing belts that provides balance and stability to the user. The use of the Peaucellier–Lipkin mechanism, its transformation from one to three degrees of freedom, and the incorporation of the stability system are the main innovations and contributions of this novel nonanthropomorphic exoskeleton. Its mobility and performance are also presented herein, through forward and inverse kinematics, together with its application in carrying out the translation movement of the robotic foot along paths with the imposition of motion laws based on polynomial functions of time.


2021 ◽  
Vol 17 (3) ◽  
pp. 22-28
Author(s):  
Maryam Sadeq Ahmed ◽  
Ali Hussien M Mary ◽  
Hisham Hassan Jasim

This paper presents a robust control method for the trajectory control of the robotic manipulator. The standard Computed Torque Control (CTC) is an important method in the robotic control systems but its not robust to system uncertainty and external disturbance. The proposed method overcome the system uncertainty and external disturbance problems. In this paper, a robustification term has been added to the standard CTC. The stability of the proposed control method is approved by the Lyapunov stability theorem.  The performance of the presented controller is tested by MATLAB-Simulink environment and is compared with different control methods to illustrate its robustness and performance.


2016 ◽  
Vol 8 (2) ◽  
Author(s):  
Mohammad Hasan H. Kani ◽  
Hamed Ali Yaghini Bonabi ◽  
Hamed Jalaly Bidgoly ◽  
Mohammad Javad Yazdanpanah ◽  
Majid Nili Ahmadabadi

This paper introduces a distributed variable impedance actuator that provides independent control of the actuator's angular position and its impedance. The idea for the actuator was inspired by the morphological structure of muscles and tendons. The system to be presented can be used as both a variable impedance actuator as well as a passive piecewise linear spring. Moreover, the actuator has an adequate number of degrees-of-freedom to approximate any nonlinear spring characteristics because of its distributed nature. Using distributed torque production subsystems with small and low power motors makes it possible to use this actuator in many applications such as prosthesis, artificial limbs, and wearable robots. The stability of the system discussed and the conditions that ensure the system stability are presented. Finally, a proof-of-concept actuator design is presented, as well as experimental results which confirm that the proposed distributed variable impedance actuator can be implemented in practical applications.


Author(s):  
Bing Ai ◽  
Luis Sentis ◽  
Nicholas Paine ◽  
Song Han ◽  
Aloysius Mok ◽  
...  

Time delay is a common phenomenon in robotic systems due to computational requirements and communication properties between or within high-level and low-level controllers as well as the physical constraints of the actuator and sensor. It is widely believed that delays are harmful for robotic systems in terms of stability and performance; however, we propose a different view that the time delay of the system may in some cases benefit system stability and performance. Therefore, in this paper, we discuss the influences of the displacement-feedback delay (single delay) and both displacement and velocity feedback delays (double delays) on robotic actuator systems by using the cluster treatment of characteristic roots (CTCR) methodology. Hence, we can ascertain the exact stability interval for single-delay systems and the rigorous stability region for double-delay systems. The influences of controller gains and the filtering frequency on the stability of the system are discussed. Based on the stability information coupled with the dominant root distribution, we propose one nonconventional rule which suggests increasing time delay to certain time windows to obtain the optimal system performance. The computation results are also verified on an actuator testbed.


2021 ◽  
Vol 11 (13) ◽  
pp. 5865
Author(s):  
Muhammad Ahsan Gull ◽  
Mikkel Thoegersen ◽  
Stefan Hein Bengtson ◽  
Mostafa Mohammadi ◽  
Lotte N. S. Andreasen Struijk ◽  
...  

Wheelchair mounted upper limb exoskeletons offer an alternative way to support disabled individuals in their activities of daily living (ADL). Key challenges in exoskeleton technology include innovative mechanical design and implementation of a control method that can assure a safe and comfortable interaction between the human upper limb and exoskeleton. In this article, we present a mechanical design of a four degrees of freedom (DOF) wheelchair mounted upper limb exoskeleton. The design takes advantage of non-backdrivable mechanism that can hold the output position without energy consumption and provide assistance to the completely paralyzed users. Moreover, a PD-based trajectory tracking control is implemented to enhance the performance of human exoskeleton system for two different tasks. Preliminary results are provided to show the effectiveness and reliability of using the proposed design for physically disabled people.


Author(s):  
Richard Stone ◽  
Minglu Wang ◽  
Thomas Schnieders ◽  
Esraa Abdelall

Human-robotic interaction system are increasingly becoming integrated into industrial, commercial and emergency service agencies. It is critical that human operators understand and trust automation when these systems support and even make important decisions. The following study focused on human-in-loop telerobotic system performing a reconnaissance operation. Twenty-four subjects were divided into groups based on level of automation (Low-Level Automation (LLA), and High-Level Automation (HLA)). Results indicated a significant difference between low and high word level of control in hit rate when permanent error occurred. In the LLA group, the type of error had a significant effect on the hit rate. In general, the high level of automation was better than the low level of automation, especially if it was more reliable, suggesting that subjects in the HLA group could rely on the automatic implementation to perform the task more effectively and more accurately.


Sign in / Sign up

Export Citation Format

Share Document