Gesture Recognition of Pigs Based on Wavelet Moment and Probabilistic Neural Network

2014 ◽  
Vol 687-691 ◽  
pp. 3691-3694
Author(s):  
Jin Jin Zhou ◽  
Wei Xing Zhu

For real-time monitoring the behavior of pigs in piggery, the method that combined the advantages of wavelet multi-scale analysis with invariant moments is proposed. Firstly, the original image is pre-processed by using ant colony algorithm to extract object contour. Then the target contour edge growth method and binary morphology are used, and the outlines of pigs are extracted by canny operator. Wavelet moment was used to get the global features of an image and increase the structural details of the image feature description. Finally, the neural network is applied to identify four behaviors including normal walking, walking down, looked up walking and lying of pigs. Experimental results show that the accuracy of the classification and identification of swine gesture reached more than 95%. This method has a better effect in the recognition of pigs and the noise resistance.

2005 ◽  
Vol 2 (2) ◽  
pp. 25
Author(s):  
Noraliza Hamzah ◽  
Wan Nor Ainin Wan Abdullah ◽  
Pauziah Mohd Arsad

Power Quality disturbances problems have gained widespread interest worldwide due to the proliferation of power electronic load such as adjustable speed drives, computer, industrial drives, communication and medical equipments. This paper presents a technique based on wavelet and probabilistic neural network to detect and classify power quality disturbances, which are harmonic, voltage sag, swell and oscillatory transient. The power quality disturbances are obtained from the waveform data collected from premises, which include the UiTM Sarawak, Faculty of Science Computer in Shah Alam, Jati College, Menara UiTM, PP Seksyen 18 and Putra LRT. Reliable Power Meter is used for data monitoring and the data is further processed using the Microsoft Excel software. From the processed data, power quality disturbances are detected using the wavelet technique. After the disturbances being detected, it is then classified using the Probabilistic Neural Network. Sixty data has been chosen for the training of the Probabilistic Neural Network and ten data has been used for the testing of the neural network. The results are further interfaced using matlab script code.  Results from the research have been very promising which proved that the wavelet technique and Probabilistic Neural Network is capable to be used for power quality disturbances detection and classification.


2002 ◽  
Vol 14 (5) ◽  
pp. 1183-1194 ◽  
Author(s):  
I. Galleske ◽  
J. Castellanos

This article proposes a procedure for the automatic determination of the elements of the covariance matrix of the gaussian kernel function of probabilistic neural networks. Two matrices, a rotation matrix and a matrix of variances, can be calculated by analyzing the local environment of each training pattern. The combination of them will form the covariance matrix of each training pattern. This automation has two advantages: First, it will free the neural network designer from indicating the complete covariance matrix, and second, it will result in a network with better generalization ability than the original model. A variation of the famous two-spiral problem and real-world examples from the UCI Machine Learning Repository will show a classification rate not only better than the original probabilistic neural network but also that this model can outperform other well-known classification techniques.


2020 ◽  
Vol 12 (5) ◽  
pp. 784 ◽  
Author(s):  
Wei Guo ◽  
Weihong Li ◽  
Weiguo Gong ◽  
Jinkai Cui

Multi-scale object detection is a basic challenge in computer vision. Although many advanced methods based on convolutional neural networks have succeeded in natural images, the progress in aerial images has been relatively slow mainly due to the considerably huge scale variations of objects and many densely distributed small objects. In this paper, considering that the semantic information of the small objects may be weakened or even disappear in the deeper layers of neural network, we propose a new detection framework called Extended Feature Pyramid Network (EFPN) for strengthening the information extraction ability of the neural network. In the EFPN, we first design the multi-branched dilated bottleneck (MBDB) module in the lateral connections to capture much more semantic information. Then, we further devise an attention pathway for better locating the objects. Finally, an augmented bottom-up pathway is conducted for making shallow layer information easier to spread and further improving performance. Moreover, we present an adaptive scale training strategy to enable the network to better recognize multi-scale objects. Meanwhile, we present a novel clustering method to achieve adaptive anchors and make the neural network better learn data features. Experiments on the public aerial datasets indicate that the presented method obtain state-of-the-art performance.


2020 ◽  
Vol 24 (5 Part B) ◽  
pp. 3059-3068
Author(s):  
Qinghong Wu

The paper uses the flame image processing technology to diagnose the furnace flame combustion achieve the measurement of boiler heat energy. The paper obtains the combustion image of the flame image processing system, and extracts the flame image characteristics of the boiler thermal energy diagnosis, constructs the neural network model of the boiler thermal energy diagnosis, and trains and tests the extracted flame image feature parameter values as the input of the neural network. A rough diagnosis of the boiler?s thermal energy is obtained while predicting the state of combustion. According to the research results, a boiler thermal energy diagnosis system was designed and tested on the boiler of 200 MW unit. The experimental results confirmed the applicability of the system, which can realize on-line monitoring of boiler heat energy and evaluate the combustion situation.


2019 ◽  
Vol 125 ◽  
pp. 15006
Author(s):  
Taufik Mawardi Sinaga ◽  
M. Syamsu Rosid ◽  
M. Wahdanadi Haidar

It has done a study of porosity prediction by using neural network. The study uses 2D seismic data post-stack time migration (PSTM) and 2 well data at field “T”. The objective is determining distribution of porosity. Porosity in carbonate reservoir is actually heterogeneous, complex and random. To face the complexity the neural network method has been implemented. The neural network algorithm uses probabilistic neural network based on best seismic attributes. It has been selected by using multi-attribute method with has high correlation. The best attributes which have been selected are amplitude envelope, average frequency, amplitude weighted phase, integrated absolute amplitude, acoustic impedance, and dominant frequency. The attribute is used as input to probabilistic neural network method process. The result porosity prediction based on probabilistic neural network use non-linear equation obtained high correlation coefficient 0.86 and approach actual log. The result has a better correlation than using multi-attribute method with correlation 0.58. The value of distribution porosity is 0.05–0.3 and it indicates the heterogeneous porosity distribution generally from the bottom to up are decreasing value.


2021 ◽  
Vol 13 (23) ◽  
pp. 4743
Author(s):  
Wei Yuan ◽  
Wenbo Xu

The segmentation of remote sensing images by deep learning technology is the main method for remote sensing image interpretation. However, the segmentation model based on a convolutional neural network cannot capture the global features very well. A transformer, whose self-attention mechanism can supply each pixel with a global feature, makes up for the deficiency of the convolutional neural network. Therefore, a multi-scale adaptive segmentation network model (MSST-Net) based on a Swin Transformer is proposed in this paper. Firstly, a Swin Transformer is used as the backbone to encode the input image. Then, the feature maps of different levels are decoded separately. Thirdly, the convolution is used for fusion, so that the network can automatically learn the weight of the decoding results of each level. Finally, we adjust the channels to obtain the final prediction map by using the convolution with a kernel of 1 × 1. By comparing this with other segmentation network models on a WHU building data set, the evaluation metrics, mIoU, F1-score and accuracy are all improved. The network model proposed in this paper is a multi-scale adaptive network model that pays more attention to the global features for remote sensing segmentation.


2011 ◽  
Vol 121-126 ◽  
pp. 382-386
Author(s):  
Yi Jun Chen ◽  
Qing Hai Zhao

In this paper, the nonlinear mapping relationship between characteristic parameters of failures and failure types is realized by using neural network through extracting characteristic variables of failures during operation of the gear. Aiming at the problems of neutral network such as slow convergence speed and existence of local minima, the neural network is optimized and the ant colony neural network is established by using the ant colony algorithm to realize rapid and accurate determination of failure status of a gear from characteristic parameters of failures. In addition, validity of the established model is verified through experiments.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Zoran Stanković ◽  
Nebojša Dončov ◽  
Bratislav Milovanović ◽  
Ivan Milovanović

An efficient neural network-based approach for tracking of variable number of moving electromagnetic (EM) sources in far-field is proposed in the paper. Electromagnetic sources considered here are of stochastic radiation nature, mutually uncorrelated, and at arbitrary angular distance. The neural network model is based on combination of probabilistic neural network (PNN) and the Multilayer Perceptron (MLP) networks and it performs real-time calculations in two stages, determining at first the number of moving sources present in an observed space sector in specific moments in time and then calculating their angular positions in azimuth plane. Once successfully trained, the neural network model is capable of performing an accurate and efficient direction of arrival (DoA) estimation within the training boundaries which is illustrated on the appropriate example.


Author(s):  
Yan Yu ◽  
Dong Qiu ◽  
Ruiteng Yan

AbstractOnly the label corresponding to the maximum value of the fully connected layer is used as the output category when a neural network performs classification tasks. When the maximum value of the fully connected layer is close to the sub-maximum value, the classification obtained by considering only the maximum value and ignoring the sub-maximum value is not completely accurate. To reduce the noise and improve classification accuracy, combining the principles of fuzzy reasoning, this paper integrates all the output results of the fully connected layer with the emotional tendency of the text based on the dictionary to establish a multi-modal fuzzy recognition emotion enhancement model. The provided model considers the enhancement effect of negative words, degree adverbs, exclamation marks, and question marks based on the smallest subtree on the emotion of emotional words, and defines the global emotional membership function of emojis based on the corpus. Through comparing the results of CNN, LSTM, BiLSTM and GRU on Weibo and Douyin, it is shown that the provided model can effectively improve the text emotion recognition when the neural network output result is not clear, especially for long texts.


Sign in / Sign up

Export Citation Format

Share Document