scholarly journals A multi-modal and multi-scale emotion-enhanced inference model based on fuzzy recognition

Author(s):  
Yan Yu ◽  
Dong Qiu ◽  
Ruiteng Yan

AbstractOnly the label corresponding to the maximum value of the fully connected layer is used as the output category when a neural network performs classification tasks. When the maximum value of the fully connected layer is close to the sub-maximum value, the classification obtained by considering only the maximum value and ignoring the sub-maximum value is not completely accurate. To reduce the noise and improve classification accuracy, combining the principles of fuzzy reasoning, this paper integrates all the output results of the fully connected layer with the emotional tendency of the text based on the dictionary to establish a multi-modal fuzzy recognition emotion enhancement model. The provided model considers the enhancement effect of negative words, degree adverbs, exclamation marks, and question marks based on the smallest subtree on the emotion of emotional words, and defines the global emotional membership function of emojis based on the corpus. Through comparing the results of CNN, LSTM, BiLSTM and GRU on Weibo and Douyin, it is shown that the provided model can effectively improve the text emotion recognition when the neural network output result is not clear, especially for long texts.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brett H. Hokr ◽  
Joel N. Bixler

AbstractDynamic, in vivo measurement of the optical properties of biological tissues is still an elusive and critically important problem. Here we develop a technique for inverting a Monte Carlo simulation to extract tissue optical properties from the statistical moments of the spatio-temporal response of the tissue by training a 5-layer fully connected neural network. We demonstrate the accuracy of the method across a very wide parameter space on a single homogeneous layer tissue model and demonstrate that the method is insensitive to parameter selection of the neural network model itself. Finally, we propose an experimental setup capable of measuring the required information in real time in an in vivo environment and demonstrate proof-of-concept level experimental results.


Author(s):  
Daniel Roten ◽  
Kim B. Olsen

ABSTRACT We use deep learning to predict surface-to-borehole Fourier amplification functions (AFs) from discretized shear-wave velocity profiles. Specifically, we train a fully connected neural network and a convolutional neural network using mean AFs observed at ∼600 KiK-net vertical array sites. Compared with predictions based on theoretical SH 1D amplifications, the neural network (NN) results in up to 50% reduction of the mean squared log error between predictions and observations at sites not used for training. In the future, NNs may lead to a purely data-driven prediction of site response that is independent of proxies or simplifying assumptions.


2020 ◽  
Vol 12 (5) ◽  
pp. 784 ◽  
Author(s):  
Wei Guo ◽  
Weihong Li ◽  
Weiguo Gong ◽  
Jinkai Cui

Multi-scale object detection is a basic challenge in computer vision. Although many advanced methods based on convolutional neural networks have succeeded in natural images, the progress in aerial images has been relatively slow mainly due to the considerably huge scale variations of objects and many densely distributed small objects. In this paper, considering that the semantic information of the small objects may be weakened or even disappear in the deeper layers of neural network, we propose a new detection framework called Extended Feature Pyramid Network (EFPN) for strengthening the information extraction ability of the neural network. In the EFPN, we first design the multi-branched dilated bottleneck (MBDB) module in the lateral connections to capture much more semantic information. Then, we further devise an attention pathway for better locating the objects. Finally, an augmented bottom-up pathway is conducted for making shallow layer information easier to spread and further improving performance. Moreover, we present an adaptive scale training strategy to enable the network to better recognize multi-scale objects. Meanwhile, we present a novel clustering method to achieve adaptive anchors and make the neural network better learn data features. Experiments on the public aerial datasets indicate that the presented method obtain state-of-the-art performance.


2012 ◽  
Vol 23 (01) ◽  
pp. 1250002 ◽  
Author(s):  
SALVATORE RAMPONE ◽  
ALESSIO VALENTE

Landslide hazard mapping is often performed through the identification and analysis of hillslope instability factors. In heuristic approaches, these factors are rated by the attribution of scores based on the assumed role played by each of them in controlling the development of a sliding process. The objective of this research is to forecast landslide susceptibility through the application of Artificial Neural Networks. In particular, given the availability of past events data, we mainly focused on the Calabria region (Italy). Vectors of eight hillslope factors (features) were considered for each considered event in this area (lithology, permeability, slope angle, vegetation cover in terms of type and density, land use, yearly rainfall and yearly temperature range). We collected 106 vectors and each one was labeled with its landslide susceptibility, which is assumed to be the output variable. Subsequently a set of these labeled vectors (examples) was used to train an artificial neural network belonging to the category of Multi-Layer Perceptron (MLP) to evaluate landslide susceptibility. Then the neural network predictions were verified on the vectors not used in the training (validation set), i.e. in previously unseen locations. The comparison between the expected output and the artificial neural network output showed satisfactory results, reporting a prediction discrepancy of less than 4.3%. This is an encouraging preliminary approach towards a systematic introduction of artificial neural network in landslide hazard assessment and mapping in the considered area.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhaojie Wang ◽  
Qingzhe Lv ◽  
Zhaobo Lu ◽  
Yilei Wang ◽  
Shengjie Yue

Incentive mechanism is the key to the success of the Bitcoin system as a permissionless blockchain. It encourages participants to contribute their computing resources to ensure the correctness and consistency of user transaction records. Selfish mining attacks, however, prove that Bitcoin’s incentive mechanism is not incentive-compatible, which is contrary to traditional views. Selfish mining attacks may cause the loss of mining power, especially those of honest participants, which brings great security challenges to the Bitcoin system. Although there are a series of studies against selfish mining behaviors, these works have certain limitations: either the existing protocol needs to be modified or the detection effect for attacks is not satisfactory. We propose the ForkDec, a high-accuracy system for selfish mining detection based on the fully connected neural network, for the purpose of effectively deterring selfish attackers. The neural network contains a total of 100 neurons (10 hidden layers and 10 neurons per layer), learned on a training set containing about 200,000 fork samples. The data set, used to train the model, is generated by a Bitcoin mining simulator that we preconstructed. We also applied ForkDec to the test set to evaluate the attack detection and achieved a detection accuracy of 99.03%. The evaluation experiment demonstrates that ForkDec has certain application value and excellent research prospects.


2021 ◽  
Vol 35 (5) ◽  
pp. 375-381
Author(s):  
Putra Sumari ◽  
Wan Muhammad Azimuddin Wan Ahmad ◽  
Faris Hadi ◽  
Muhammad Mazlan ◽  
Nur Anis Liyana ◽  
...  

Fruits come in different variants and subspecies. While some subspecies of fruits can be easily differentiated, others may require an expertness to differentiate them. Although farmers rely on the traditional methods to identify and classify fruit types, the methods are prone to so many challenges. Training a machine to identify and classify fruit types in place of traditional methods can ensure precision fruit classification. By taking advantage of the state-of-the-art image recognition techniques, we approach fruits classification from another perspective by proposing a high performing hybrid deep learning which could ensure precision mangosteen fruit classification. This involves a proposed optimized Convolutional Neural Network (CNN) model compared to other optimized models such as Xception, VGG16, and ResNet50 using Adam, RMSprop, Adagrad, and Stochastic Gradient Descent (SGD) optimizers on specified dense layers and filters numbers. The proposed CNN model has three types of layers that make up its model, they are: 1) the convolutional layers, 2) the pooling layers, and 3) the fully connected (FC) layers. The first convolution layer uses convolution filters with a filter size of 3x3 used for initializing the neural network with some weights prior to updating to a better value for each iteration. The CNN architecture is formed from stacking these layers. Our self-acquired dataset which is composed of four different types of Malaysian mangosteen fruit, namely Manggis Hutan, Manggis Mesta, Manggis Putih and Manggis Ungu was employed for the training and testing of the proposed CNN model. The proposed CNN model achieved 94.99% classification accuracy higher than the optimized Xception model which achieved 90.62% accuracy in the second position.


2020 ◽  
Vol 12 (5) ◽  
pp. 789 ◽  
Author(s):  
Kun Li ◽  
Xiangyun Hu ◽  
Huiwei Jiang ◽  
Zhen Shu ◽  
Mi Zhang

Automatic extraction of region objects from high-resolution satellite imagery presents a great challenge, because there may be very large variations of the objects in terms of their size, texture, shape, and contextual complexity in the image. To handle these issues, we present a novel, deep-learning-based approach to interactively extract non-artificial region objects, such as water bodies, woodland, farmland, etc., from high-resolution satellite imagery. First, our algorithm transforms user-provided positive and negative clicks or scribbles into guidance maps, which consist of a relevance map modified from Euclidean distance maps, two geodesic distance maps (for positive and negative, respectively), and a sampling map. Then, feature maps are extracted by applying a VGG convolutional neural network pre-trained on the ImageNet dataset to the image X, and they are then upsampled to the resolution of X. Image X, guidance maps, and feature maps are integrated as the input tensor. We feed the proposed attention-guided, multi-scale segmentation neural network (AGMSSeg-Net) with the input tensor above to obtain the mask that assigns a binary label to each pixel. After a post-processing operation based on a fully connected Conditional Random Field (CRF), we extract the selected object boundary from the segmentation result. Experiments were conducted on two typical datasets with diverse region object types from complex scenes. The results demonstrate the effectiveness of the proposed method, and our approach outperforms existing methods for interactive image segmentation.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4161 ◽  
Author(s):  
Hang ◽  
Zhang ◽  
Chen ◽  
Zhang ◽  
Wang

Plant leaf diseases are closely related to people's daily life. Due to the wide variety of diseases, it is not only time-consuming and labor-intensive to identify and classify diseases by artificial eyes, but also easy to be misidentified with having a high error rate. Therefore, we proposed a deep learning-based method to identify and classify plant leaf diseases. The proposed method can take the advantages of the neural network to extract the characteristics of diseased parts, and thus to classify target disease areas. To address the issues of long training convergence time and too-large model parameters, the traditional convolutional neural network was improved by combining a structure of inception module, a squeeze-and-excitation (SE) module and a global pooling layer to identify diseases. Through the Inception structure, the feature data of the convolutional layer were fused in multi-scales to improve the accuracy on the leaf disease dataset. Finally, the global average pooling layer was used instead of the fully connected layer to reduce the number of model parameters. Compared with some traditional convolutional neural networks, our model yielded better performance and achieved an accuracy of 91.7% on the test data set. At the same time, the number of model parameters and training time have also been greatly reduced. The experimental classification on plant leaf diseases indicated that our method is feasible and effective.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2150
Author(s):  
Romênia G. Vieira ◽  
Mahmoud Dhimish ◽  
Fábio M. U. de Araújo ◽  
Maria I. S. Guerra

This work introduces a new fault detection method for photovoltaic systems. The method identifies short-circuited modules and disconnected strings on photovoltaic systems combining two machine learning techniques. The first algorithm is a multilayer feedforward neural network, which uses irradiance, ambient temperature, and power at the maximum power point as input variables. The neural network output enters a Sugeno type fuzzy logic system that precisely determines how many faulty modules are occurring on the power plant. The proposed method was trained using a simulated dataset and validated using experimental data. The obtained results showed 99.28% accuracy on detecting short-circuited photovoltaic modules and 99.43% on detecting disconnected strings.


2014 ◽  
Vol 687-691 ◽  
pp. 3691-3694
Author(s):  
Jin Jin Zhou ◽  
Wei Xing Zhu

For real-time monitoring the behavior of pigs in piggery, the method that combined the advantages of wavelet multi-scale analysis with invariant moments is proposed. Firstly, the original image is pre-processed by using ant colony algorithm to extract object contour. Then the target contour edge growth method and binary morphology are used, and the outlines of pigs are extracted by canny operator. Wavelet moment was used to get the global features of an image and increase the structural details of the image feature description. Finally, the neural network is applied to identify four behaviors including normal walking, walking down, looked up walking and lying of pigs. Experimental results show that the accuracy of the classification and identification of swine gesture reached more than 95%. This method has a better effect in the recognition of pigs and the noise resistance.


Sign in / Sign up

Export Citation Format

Share Document