scholarly journals Engine Performance of a Gardener Compression Ignition Engine using Rapeseed Methyl Esther

2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Hamisu A Dandajeh ◽  
Talib O Ahmadu

This paper presents an experimental investigation on the influence of engine speed on the combustion characteristics of a Gardener compression ignition engine fueled with rapeseed methyl esther (RME). The engine has a maximum power of 14.4 kW and maximum speed of 1500 rpm. The experiment was carried out at speeds of 750 and 1250 rpm under loads of 4, 8, 12, 16 and 18 kg. Variations of cylinder pressure with crank angle degrees and cylinder volume have been examined. It was found that RME demonstrated short ignition delay primarily due to its high cetane number and leaner fuel properties (equivalence ratio (φ) = 0.22 at 4kg). An increase in thermal efficiency but decrease in volumetric efficiency was recorded due to increased brake loads. Variations in fuel mass flow rate, air mass flow rate, exhaust gas temperatures and equivalence ratio with respect to brake mean effective pressure at engine speeds of 750 and 1250 rpm were also demonstrated in this paper. Higher engine speed of 1250 rpm resulted in higher fuel and air mass flow rates, exhaust temperature, brake power and equivalent ratio but lower volumetric efficiency. Keywords— combustion characteristics, engine performance, engine speed, rapeseed methyl Esther

2021 ◽  
Author(s):  
Tong Su ◽  
Yuzhen Lin ◽  
Chi Zhang ◽  
Xiao Han

Abstract The flow fields, emission levels, and static stability characteristics were investigated experimentally under various air split ratios (ASR, the ratio of the pilot stage air mass flow rate to the total air mass flow rate) at a fixed equivalence ratio of 0.8 of both main and pilot stages in a premixed centrally-staged swirl flame. The flame structures were captured by a CH* chemiluminescence high-speed camera and the corresponding results were processed by Abel deconvolution. Besides, the flow fields obtained by using planar Particle Image Velocimetry (PIV) technique were combined with flame structures to make a better study on the aerodynamic structures of the centrally-staged swirl flames. The emission levels of NOx and CO were measured by a gas analyzer. The stability boundaries and flame structures at different equivalence ratios under three ASRs were also studied. It is found that the size of the reacting primary recirculation zone (PRZ) becomes larger as more air is distributed to the pilot stage. This can be explained by the fact that the majority of the pilot fluid participates in the formation of the PRZ and also as a result of a stronger penetrability of the pilot jet. Moreover, the NOx emission levels increase while CO levels decrease, which is because of the longer residence time of the radicals within a larger PRZ and less impingement of the main flame on the combustor liner. Finally, the stability boundary is extended, and the total blowout equivalence ratio was decreased as the air split ratio increases, which demonstrates the flame stabilization effect of the pilot flame. In brief, the above findings can be a help to choose the appropriate air split ratio in the early design stage of the centrally-staged aero-engine combustors.


Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 71
Author(s):  
Alessandro Coclite ◽  
Maria Faruoli ◽  
Annarita Viggiano ◽  
Paolo Caso ◽  
Vinicio Magi

The present work deals with an analysis of the cooling system for a two-stroke aircraft engine with compression ignition. This analysis is carried out by means of a 3D finite-volume RANS equations solver with k- ϵ closure. Three different cooling system geometries are critically compared with a discussion on the capabilities and limitations of each technical solution. A first configuration of such a system is considered and analyzed by evaluating the pressure loss across the system as a function of the inlet mass-flow rate. Moreover, the velocity and vorticity patterns are analyzed to highlight the features of the flow structure. Thermal effects on the engine structure are also taken into account and the cooling system performance is assessed as a function of both the inlet mass-flow rate and the cylinder jackets temperatures. Then, by considering the main thermo-fluid dynamics features obtained in the case of the first configuration, two geometrical modifications are proposed to improve the efficiency of the system. As regards the first modification, the fluid intake is split in two manifolds by keeping the same total mass-flow rate. As regards the second configuration, a new single-inlet geometry is designed by inserting restrictions and enlargements within the cooling system to constrain the coolant flow through the cylinder jackets and by moving downstream the outflow section. It is shown that the second geometry modification achieves the best performances by improving the overall transferred heat of about 20% with respect to the first one, while keeping the three cylinders only slightly unevenly cooled. However, an increase of the flow characteristic loads occurs due to the geometrical restrictions and enlargements of the cooling system.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Rosid Rosid ◽  
Bambang Sudarmanta ◽  
Lukman Atmaja ◽  
Salih Özer

The purpose of this study was to examine the addition of air mass flow rate into the combustion chamber using E30 emulsion fuel (Water 70% + Dex 30% + 2% surfactant tween 80 + span 80 ) on a Diamond DI 800 stationary diesel engine with an engine rotation of 1500 rpm. Characteristics evaluated using Combustion Analyze, and emissions measured with a Gas Analyzer. The results showed the addition of air mass flow rate affected engine performance and emissions with the engine power observed to have decreased by 0.016% while SFC and thermal efficiency increased by 2,077% and 33,053% respectively compared to diesel fuel. Moreover, the BMEP and exhaust temperature also decreased with the most optimum in BMEP found to be 0.02% and exhaust temperature at 285°C while diesel has 358°C. The analysis of the combustion process for E30 emulsion fuel with variations in the air mass flow rate added showed the peak cylinder pressure at high loads was at 0.018 kg/s at a pressure of 5.86 bar. Meanwhile, the optimum heat release rate at high loads was obtained at a variation of 0.013 kg/s. This, therefore, means adding air mass flow rate to the E30 emulsion fuel has the ability to improve performance and reduce engine emissions.


2016 ◽  
Author(s):  
Henrique Dornelles ◽  
Jácson Antolini ◽  
Rafael Sari ◽  
Macklini Dalla Nora ◽  
Paulo Romeu Machado ◽  
...  

Author(s):  
Nasser Seraj Mehdizadeh ◽  
Nozar Akbari

Lean premixed combustion is widely used in recent years as a method to achieve the environmental standards with regard to NOx emission. In spite of the mentioned advantage, premixed combustion systems, with equivalence ratios less than one, are susceptible to the combustion instability. To study the lean combustion instability, by experiments, one premixed combustion setup, equipped with reactant supplying system, is designed and manufactured in Amirkabir University of Technology. In this research, gaseous propane is introduced as fuel and several experiments are performed at nearly atmospheric pressure, with equivalence ratios within the range of 0.7 to 1.5. In this experiments fuel mass flow rate is varied between 2 and 4 gr/s. Unstable operating condition has been observed in combustion chamber when equivalence ratio is less than one. To distinguish the combustion instability for various operating conditions, probability density functions, spectral diagrams, and space distribution of pressure oscillations, along with Rayleigh Criterion, are utilized. Accordingly, effect of equivalence ratio on stabilizing the unstable combustion system is investigated. Moreover, convective delay time is calculated for all experiments and the results are compared with Rayleigh Criterion. This comparison has shown good agreement the experimental results and Rayleigh Criterion. Finally, stability limits are identified based on inlet mass flow rate and equivalence ratio.


2003 ◽  
Vol 125 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Chang-Yuan Liu ◽  
Ying-Huei Hung

Both experimental and theoretical investigations on the heat transfer and flow friction characteristics of compact cold plates have been performed. From the results, the local and average temperature rises on the cold plate surface increase with increasing chip heat flux or decreasing air mass flow rate. Besides, the effect of chip heat flux on the thermal resistance of cold plate is insignificant; while the thermal resistance of cold plate decreases with increasing air mass flow rate. Three empirical correlations of thermal resistance in terms of air mass flow rate with a power of −0.228 are presented. As for average Nusselt number, the effect of chip heat flux on the average Nusselt number is insignificant; while the average Nusselt number of the cold plate increases with increasing Reynolds number. An empirical relationship between Nu¯cp and Re can be correlated. In the flow frictional aspect, the overall pressure drop of the cold plate increases with increasing air mass flow rate; while it is insignificantly affected by chip heat flux. An empirical correlation of the overall pressure drop in terms of air mass flow rate with a power of 1.265 is presented. Finally, both heat transfer performance factor “j” and pumping power factor “f” decrease with increasing Reynolds number in a power of 0.805; while they are independent of chip heat flux. The Colburn analogy can be adequately employed in the study.


Sign in / Sign up

Export Citation Format

Share Document