Research on Energy Management Control Strategy by dSPACE Based Half-Practicality Simulation

2014 ◽  
Vol 697 ◽  
pp. 263-266
Author(s):  
Qun Zhang Tu ◽  
Xiao Chen Zhang ◽  
Ming Pan ◽  
Xia Feng ◽  
Wei Jie Zheng

In order to manage the power of electric drive system effectively and improve the fuel economy and working efficiency of electric drive tracked vehicle, this paper proposed a novel energy management control strategy based on the theory of threshold logic and fuzzy logic. The mathematical models of the key components of electric drive system were built in SIMULINK. To examine and analysis the efficiency of control strategy, a driver-controller based HILS (hardware-in-the-loop simulation) platform was built and the energy management control strategy was verified. The simulation results reveal that the strategy have excellent performance in energy distribution, fuel saving and working efficiency, and the proposed control strategy is simple and easy to realize in a real controller, which provides an effective method for the design and application of energy management control strategy of electric drive tracked vehicle.

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Qunzhang Tu ◽  
Xiaochen Zhang ◽  
Ming Pan ◽  
Chengming Jiang ◽  
Jinhong Xue

This article studies the power management control strategy of electric drive system and, in particular, improves the fuel economy for electric drive tracked vehicles. Combined with theoretical analysis and experimental data, real-time control oriented models of electric drive system are established. Taking into account the workloads of engine and the SOC (state of charge) of battery, a fuzzy logic based power management control strategy is proposed. In order to achieve a further improvement in fuel economic, a DEHPSO algorithm (differential evolution based hybrid particle swarm optimization) is adopted to optimize the membership functions of fuzzy controller. Finally, to verify the validity of control strategy, a HILS (hardware-in-the-loop simulation) platform is built based on dSPACE and related experiments are carried out. The results indicate that the proposed strategy obtained good effects on power management, which achieves high working efficiency and power output capacity. Optimized by DEHPSO algorithm, fuel consumption of the system is decreased by 4.88% and the fuel economy is obviously improved, which will offer an effective way to improve integrated performance of electric drive tracked vehicles.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Ming Pan ◽  
Jun Yan ◽  
Qunzhang Tu ◽  
Chengming Jiang

The multi-energy management strategy of electric drive system of tracked bulldozer was researched. Firstly, based on power requirement of typical working condition of a tracked bulldozer, the power distribution strategy for three energy sources in the front power chain was proposed by using wavelet theory and fuzzy control theory. Secondly, the electric drive system simulation platform was built in MATLAB/Simulink. At last, a driver-controller based HILS (hardware-in-the-loop simulation) platform was built and the multi-energy management strategy was verified. The HILS result shows that front power chain’s power output can meet the back power chain’s requirement, the engine-generator set works near the best fuel consumption curve, and the battery pack’s charge-discharge frequency and current are low. Thus the designed multi-energy management strategy can be used in real-time control of electric drive bulldozer.


2020 ◽  
Vol 10 (11) ◽  
pp. 3778 ◽  
Author(s):  
Jianjun Hu ◽  
Ying Yang ◽  
Meixia Jia ◽  
Yongjie Guan ◽  
Tao Peng

The combination of permanent magnet synchronous motor (PMSM) and inverter is the key electric drive system (EDS) of electric vehicles (EVs), and its overall efficiency seriously affects the energy consumption of EVs. In order to further improve the efficiency of PMSM-inverter, the influence of a special control object current angle β on EDS was studied and the general rule between β and EDS efficiency was obtained in this paper. Then, the golden section search (GSS) method was used to obtain optimal β and its corresponding stator current is, which can realize EDS working in optimal efficiency in the whole EDS working area. On this basis, an overall efficiency optimization control strategy for EDS based on the current angle β look-up table was proposed in this paper. To verify the effectiveness of the proposed control strategy, simulation considering iron loss and copper loss of motor and inverter loss was completed, which showed that compared with traditional control, the control strategy proposed in this paper can effectively improve the working efficiency of EDS under steady state and transient state.


2021 ◽  
Vol 2021 ◽  
pp. 1-9 ◽  
Author(s):  
Qinghai Zhao ◽  
Hongxin Zhang ◽  
Yafei Xin

The vehicle will generate an amount of current while the electric vehicle just starting to regeneratively brake. In order to avoid the impact of high current on the traction battery, a novel electrohydraulic hybrid electric vehicle has been proposed. The main power source is supplied by the electric drive system, and the hydraulic system performs the auxiliary drive system that fully exerts the advantages of the electric drive system and the hydraulic drive system. A proper regenerative braking control strategy is presented, and the control parameters are determined by the fuzzy optimization algorithm. The simulation analysis built the model through the united simulation of AMESim and MATLAB/Simulink. The results illustrated that the optimized control strategy can reduce battery consumption by 1.22% under NEDC-operating conditions.


2021 ◽  
Vol 12 (4) ◽  
pp. 182
Author(s):  
Zhiguo Kong ◽  
Wei Zhang ◽  
Helin Zhang

In order to obtain the performance of the electric drive system (EDS) on the vehicle level correctly and effectively, the authors carried out research on the testing and evaluation technology. Firstly, the typical control strategy and its influence and limitations regarding the EDS performance were discussed in detail. Secondly, a test system on four-wheel dynamometers with a high-performance data acquisition and analysis system was introduced. A dedicated test was performed. Further analysis of the results was introduced. It is proved that the method introduced here is feasible and effective, which is beneficial to benchmarking and evaluation of the EDS used in electric vehicles.


Sign in / Sign up

Export Citation Format

Share Document