Computer Simulation of the Drawing Process of Cylindrical Cups Taking into Account the Microstructure of the 5056 Alloy

2014 ◽  
Vol 698 ◽  
pp. 395-400
Author(s):  
Sergey V. Voronin ◽  
Valentin D. Yushin ◽  
Galina Z. Bunova

Computer simulation of the process drawing a cup from the 5056 alloy sheet material was conducted. An influence of a real structure of a grain-oriented material on a stress-strain state was shown. The profiles of the formed festoons, their gage interference along the generator line and perimeter were measured. Values of a maximum drawing force for the isotropic, anisotropic, and grain-oriented by 40 and 70% of finite element sample models were defined.

2020 ◽  
Vol 299 ◽  
pp. 699-704
Author(s):  
Andrey O. Tolkushkin ◽  
Sergey N. Lezhnev ◽  
A.B. Naizabekov

The paper presents the results of a computer simulation of the drawing process in the step-wedge dies of two configurations: with wedge-shaped protrusions in the first and second sections of the top and bottom dies, and with a wedge-shaped protrusion in the first and second sections of the top die and wedge-shaped cavity in the first and second sections of the bottom die. A comparative analysis of the stress-strain state and energy-power parameters is carried out. Based on the analysis conclusions about the feasibility of choosing a specific configuration of step-wedge dies depending on the set aim were made.


Author(s):  
Volodymyr Maliar

The main destructions of asphalt concrete pavement are rut, transverse cracking, fatigue failures, peeling, etc. When the pavement cools, lowtemperature damages can occur for various reasons. The sources of damages that cause such failures are not well studied, so this problem is relevant. Goal. The aim of this work was to determine the stress-strain state inside the volume of asphalt con-crete during cooling on the basis of a two composite three-dimensional model using the method of computer simulation in response to the changing structured bitumen properties. Methodology. The method of finite element analysis of the stress-strain state of the composite material was used. The material is represented by a three-dimensional (3D) model pro-posed by prof. B.S. Radovsky. Results. The finite element analysis method was used to calculate the average thermal stresses in asphalt concrete during cooling in accordance with increase of viscosity of bitumen section, which is located in asphalt concrete in a structured state. This consideration is realized on the basis of changes in a number of bitumen properties in the contact zone, in particular, the changes in the glass transition temperature. It is shown that the thermal stresses that occur during cooling by limiting the movement of asphalt concrete in the construction reach the strength values at negative temperatures, which can be used to estimate the temperature of crack formation in asphalt concrete under the condi-tion of its action in pavement (Tcr). The values of these stresses depend on the cooling rate, the bitumen content, its viscosity and structure. Originality. For the first time, it was found numerically that in the sample of asphalt concrete, which is free from restriction of movements, there are internal thermal stresses during cooling due to the difference of bitumen thermal expansion coefficients and stone materials. These stresses are up to 87 percent of the average thermal stresses that occur in the compressed sample. Practical value. The possibility of rapid estimation of thermal stresses with the possibility of predicting low-temperature cracks in asphalt concrete is shown.


2015 ◽  
Vol 639 ◽  
pp. 33-40 ◽  
Author(s):  
Lucian Lazarescu ◽  
Ioan Nicodim ◽  
Dorel Banabic

In the deep drawing process, the blank-holding force (BHF) is an important process parameter affecting the energy consumption and the successful production of parts. In the present work, both experiments and finite element simulations have been conducted to investigate the influence of constant and time variable BHF on drawing force (DF) and thickness distribution in the deep drawing process of cylindrical and square cups. A finite element model was developed in the AutoForm software and validated with experiments. The developed model has been used for the simulation of deep drawing process of AA6016-T4 aluminum alloy sheet. The experimental and numerical results show that, using a variable instead of a constant BHF, the DF can be decreased in the expense of wall thickening.


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


Author(s):  
V. I. Tarichko ◽  
P. I. Shalupina

The paper focuses on a method for assessing the dynamic loading of the frame of a special wheeled chassis when it moves on roads of various categories. Based on the developed finite element model of the frame, we obtained and analyzed full-size patterns of the stress-strain state of the frame and oscillograms of equivalent stresses in the most loaded zones of the frame.


Vestnik MGSU ◽  
2019 ◽  
pp. 22-32
Author(s):  
Farit S. Zamaliev

Introduction. Conducted is to the evaluation of the stress-strain state of the steel-concrete beams with thin-walled section. In recent times, steel-reinforced concrete structures have become widely used in civilian buildings (beams, slabs, columns). Thin-walled section have not found wide application in steel concrete structures, unlike steel structures. Presents the results of numerical studies of beams consisting of concrete, anchors and steel beams. Two investigating of the location of anchors are given. Numerical investigations are presented of steel-concrete beams with thin-walled section based on numerical studies. Testing procedure and test result are given. Results of calculations, comparison of numerical and experimental studies are presented. Materials and methods. For full-scale experiments, steel I-beams with filling of side cavities with concrete were adopted, screws are used as anchor ties, with varied both the lengths and their location (vertically and obliquely). As steel curved C-shaped steel profiles were used steel profiles from the range of the company “Steel Faces”. ANSYS software package was used for computer modeling. A total of 16 steel concrete beams were considered, for which the results of strength and stiffness evaluation were obtained in ANSYS. Results. The data of the stress-strain state of beams on the basis of computer simulation are obtained. The results are used for the production of field samples. Data of computer simulation are compared with the indicators of field experiments. Conclusions. The stress-strain state of steel-concrete structures was studied on the basis of numerical and experimental data. The proposed calculation method gives good convergence with the experimental data. Anchor connections made from self-tapping screws can be used in studies for modeling in steel-concrete beams structures and other anchor devices, ensuring the joint operation of concrete and steel profiles in structures.


Sign in / Sign up

Export Citation Format

Share Document