scholarly journals Variability in Embodied Energy and Carbon Intensities of Building Materials Using Hybrid LCA: Malaysian Experience

2014 ◽  
Vol 699 ◽  
pp. 858-863
Author(s):  
Wan Mohd Sabki Wan Omar ◽  
Jeung Hwan Doh ◽  
Kriengsak Panuwatwanich

This paper empirically investigates the variations of embodied energy (EE) and carbon (EC) intensities of materials and identifies their parameter variations in hybrid life cycle assessment (LCA). These parameters include energy tariff, primary energy factor, disaggregation constant, emission factor, and price fluctuation. Hybrid LCA has been conducted to expand the system boundary by filling the gaps in traditional LCA data inventories. The Malaysian Input-Output (I-O) tables are used to derive indirect energy and carbon intensities which are then combined to take advantages of detailed process LCA. The results revealed that maximum increase in energy tariffs and material price fluctuations were the key parameters and issues leading to higher variations in EE and EC intensity values. Other parameters – such as maximum increase in primary energy factor, emission factor and excluding disaggregation constant – have a slight impact upon EE and EC intensity variations. Building materials with high indirect energy in the upstream boundary of materials production have high influence on hybrid LCA variation. Therefore, any decision relating to these materials should be considered carefully.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3788
Author(s):  
Francesco Asdrubali ◽  
Marta Roncone ◽  
Gianluca Grazieschi

The construction sector is one of the most energy-intensive in the industrialized countries. In order to limit climate change emissions throughout the entire life cycle of a building, in addition to reducing energy consumption in the operational phase, attention should also be paid to the embodied energy and CO2 emissions of the building itself. The purpose of this work is to review data on embodied energy and GWP derived from EPDs of different types of windows, to identify the LCA phases, the most impacting materials and processes from an environmental point of view and to perform a critical analysis of the outcomes. The results show a strong dependence on the typology of the frame, with wooden windows having competitive performances: lower average primary energy non-renewable (1123 MJ/FU), higher average primary energy renewable (respectively 817 MJ/FU) and lower global warming potential (54 kgCO2eq/FU). More transparency and standardization in the information conveyed by the program operators is, however, desirable for a better comparability of windows performances. In particular, the inclusion of the operational impact in the EPD is sporadic, but strongly important, since it can be the most impactful phase.


2020 ◽  
Vol 12 (16) ◽  
pp. 6563
Author(s):  
Roque G Stagnitta ◽  
Matteo V Rocco ◽  
Emanuela Colombo

Energy balances have been historically conceived based on a supply-side perspective, providing neither detailed information about energy conversion into useful services nor the effects that may be induced by the application of policies in other sectors to energy consumption. This article proposes an approach to a thorough assessment of the impact of efficiency policies on final energy uses, focusing on residential space heating and cooling, and capable of: (1) quantifying final useful services provided and (2) accounting for the global impact of efficiency policies on final energy use, taking advantage of Input–Output analysis. This approach is applied in five cities of Argentina. Firstly, the quantity of energy service provided (i.e., level of thermal comfort) for each city is evaluated and compared with the defined target. It is found out that heating comfort is guaranteed approximately as established, whereas in the cooling case the provision is twice the established level. Secondly, primary energy consumption of heating and cooling services is evaluated before and after different efficiency improvement policies. The results show that the major primary energy saving (52%) is obtained from the upgrading appliances scenario and reflect the importance of accounting for embodied energy in goods and services involved in interventions.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1905 ◽  
Author(s):  
Ming Hu

Knowledge and research tying the environmental impact and embodied energy together is a largely unexplored area in the building industry. The aim of this study is to investigate the practicality of using the ratio between embodied energy and embodied carbon to measure the building’s impact. This study is based on life-cycle assessment and proposes a new measure: life-cycle embodied performance (LCEP), in order to evaluate building performance. In this project, eight buildings located in the same climate zone with similar construction types are studied to test the proposed method. For each case, the embodied energy intensities and embodied carbon coefficients are calculated, and four environmental impact categories are quantified. The following observations can be drawn from the findings: (a) the ozone depletion potential could be used as an indicator to predict the value of LCEP; (b) the use of embodied energy and embodied carbon independently from each other could lead to incomplete assessments; and (c) the exterior wall system is a common significant factor influencing embodied energy and embodied carbon. The results lead to several conclusions: firstly, the proposed LCEP ratio, between embodied energy and embodied carbon, can serve as a genuine indicator of embodied performance. Secondly, environmental impact categories are not dependent on embodied energy, nor embodied carbon. Rather, they are proportional to LCEP. Lastly, among the different building materials studied, metal and concrete express the highest contribution towards embodied energy and embodied carbon.


Proceedings ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 5
Author(s):  
Rokas Tamašauskas ◽  
Jolanta Šadauskienė ◽  
Dorota Anna Krawczyk ◽  
Violeta Medelienė

The European Commission has set the target in the Energy Efficiency Directive (EED) to reduce EU primary energy consumption in 2020 by 20%. A crucial aspect of the overall assessment of energy saving measures that affect electricity demand is the primary energy factor that is used for evaluation of primary energy consumption from renewable energy resources in a Nearly Zero Energy Building (nZEB). The analysis of the resources has revealed that energy from photovoltaics is evaluated using different methods. Therefore, this article’s aim is to investigate and evaluate the primary energy factor of energy from photovoltaics using the data of produced and consumed energy of 30 photovoltaic (PV) systems operating in Lithuania. Investigation results show that the difference of non-renewable primary energy factor between the PV systems due to capacities is 35%. In addition, the results of the studies show that the average value of the primary energy factor of PV systems in Lithuania is 1.038.


Buildings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 136 ◽  
Author(s):  
Woubishet Zewdu Taffese ◽  
Kassahun Admassu Abegaz

Buildings use a wide range of construction materials, and the manufacturing of each material consumes energy and emits CO2. Several studies have already been conducted to evaluate the embodied energy and the related CO2 emissions of building materials, which are mainly based on case studies from developed countries. There is a considerable gap in cases of developing countries regarding assessment of embodied energy and CO2 emissions of these building materials. This study identified the top five most used construction materials (cement, sand, coarse aggregates, hollow concrete blocks, and reinforcement bars), which are also prime sources of waste generation during construction in the Ethiopian building construction sector. Then, what followed was the evaluation of the embodied energies and CO2 emissions of these materials by examining five commercial and public buildings within the cradle-to-site lifecycle boundary. The evaluation results demonstrated that cement, hollow concrete blocks (HCB), and reinforcement bars (rebars) are the major consumers of energy and major CO2 emitters. Cumulatively, they were responsible for 94% of the embodied energy and 98% of the CO2 emissions. The waste part of the construction materials has inflated the embodied energy and the subsequent CO2 emissions considerably. The study also recommended several strategies for the reduction of embodied energy and the related CO2 emissions. The research delivers critical insights into embodied energy and CO2 emissions of the five most used building materials in the Ethiopian construction industry, as there are no prior studies on this theme. This might be a cause to arouse awareness and interest among the policy makers and the wider public to clearly understand the importance of research on this crucial issue to develop national energy and CO2 descriptors for construction materials, in order to take care of our naturally endowed, but yet fragile, human habitat.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4337
Author(s):  
Daniel González-Prieto ◽  
Yolanda Fernández-Nava ◽  
Elena Marañón ◽  
Maria Manuela Prieto

The use of lightweight concrete for the construction of single-family houses has become increasingly popular in Spain. In this paper, single-family houses with different shape factors and window-to-wall ratios are analysed from both a thermal and environmental perspective using Passive House Planning Package (PHPP) software to calculate the energy demand. The study has been carried out for different Atlantic microclimates (coastal, inland, and mountain) in northern Spain. What most affects the thermal energy used for air conditioning is the variation of the microclimates, so the study focuses mainly on this aspect. Operational energy for heating has decreased greatly via the use of high degree of insulation and hence the next task is to decrease the total energy consumed taking into account the embodied energy. Impacts on Primary Energy and Global Warming Potential are calculated using a cradle-to-grave approach. The energy use for heating and domestic hot water is analysed for different thicknesses of insulation under three energy supply scenarios: electricity only (for 2018 and with the Spanish decarbonisation plan for 2030); heat pump plus electricity; and natural gas boiler. Even for houses with a good level of insulation, the ratio of operational-to-total impacts varies significantly: from 46% to 87% for primary energy and from 31% to 75% for global warming potential, depending on the shape factor of the house, the microclimate and the heat supply scenario. By applying future environmental policies, electricity can become a more environmentally friendly option than natural gas.


Proceedings ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 4
Author(s):  
Rokas Tamašauskas ◽  
Jolanta Šadauskienė ◽  
Monika Šadauskaitė

There is currently no common or standardized procedure for certification of the energy performance of buildings, as each EU Member State takes into account the specificities of its own construction sector when implementing the provisions of Directive 2010/31/EU. This usually depends on two features: the purpose of the building and the climate. Therefore, the purpose of this paper is to evaluate the influence of the hydropower primary energy factor on assessing the energy performance of buildings. For this purpose, non-renewable primary energy factor values were analyzed regarding actual energy production and consumption data from 19 Lithuanian hydroelectric plants. The results of the studies show that the average value of the non-renewable primary energy factor of hydropower plants is 0.059.


Sign in / Sign up

Export Citation Format

Share Document