scholarly journals Validation of Welding Simulations Using Thermal Strains Measured with DIC

2011 ◽  
Vol 70 ◽  
pp. 129-134 ◽  
Author(s):  
Maarten De Strycker ◽  
Pascal Lava ◽  
Wim Van Paepegem ◽  
Luc Schueremans ◽  
Dimitri Debruyne

Residual stresses can affect the performance of steel tubes in many ways and as a result their magnitude and distribution is of particular interest to many applications. Residual stresses in cold-rolled steel tubes mainly originate from the rolling of a flat plate into a circular cross section (involving plastic deformations) and the weld bead that closes the cross section (involving non-uniform heating and cooling). Focus in this contribution is on the longitudinal weld bead that closes the cross section. To reveal the residual stresses in the tubes under consideration, a finite element analysis (FEA) of the welding step in the production process is made. The FEA of the welding process is validated with the temperature evolution of the thermal simulation and the strain evolution for the mechanical part of the analysis. Several methods for measuring the strain evolution are available and in this contribution it is investigated if the Digital Image Correlation (DIC) technique can record the strain evolution during welding. It is shown that the strain evolution obtained with DIC is in agreement with that found by electrical resistance strain gauges. The results of these experimental measuring methods are compared with numerical results from a FEA of the welding process.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Dezheng Liu ◽  
Yan Li ◽  
Haisheng Liu ◽  
Zhongren Wang ◽  
Yu Wang

Weld solidification crack prevention in the laser penetration welding process is essential for the strength of the welded component. The formation of solidification cracks can ultimately be attributed to welding residual stresses, and preventive measures should be taken during welding. In this study, the effects of residual stresses on the laser penetration welding quality of ultrafine-grained steels were investigated. A heat source model was established through the analysis of the metallography of the cross section of the heat-affected zone (HAZ) of ultrafine-grained AN420s-grade steel, and the chemical composition of the weld bead was obtained using an FLS980-stm Edinburgh fluorescence spectrometer. Furthermore, the constitutive coupling relation between the temperature and material flow stress was established based on the Gibbs function, and the welding residual stress was obtained by setting trace points in a finite element analysis (FEA) model based on experimental data of the weld bead cross section under different welding conditions. The results show that weld solidification cracks will form when the residual stresses exceed the material flow stresses in the weld bead, and the residual stresses can be decreased through a reasonable increase of the welding speed. The results indicate that the proposed criterion has high accuracy and can be used to predict the formation of weld solidification cracks in the laser penetration welding process.


2012 ◽  
Vol 59 (3) ◽  
pp. 283-296 ◽  
Author(s):  
Grzegorz Orzechowski

Abstract The beam elements, which are widely used in the absolute nodal coordinate formulation (ANCF) can be treated as isoparametric elements, and by analogy to the classical finite element analysis (FEA) are integrated with standard, spatial Gauss- Legendre quadratures. For this reason, the shape of the ANCF beam cross section is restricted only to the shape of rectangle. In this paper, a distinct method of integration of ANCF elements based on continuum mechanics approach is presented. This method allows for efficient analysis of the ANCF beam elements with circular cross section. The integration of element vectors and matrices is performed by separation of the quadrature into the part that integrate along beam axis and the part that integrate in the beam cross section. Then, an alternative quadrature is used to integrate in the circular shape of the cross section. Since the number of integration points in the alternative quadrature corresponds to the number of points in the standard Gaussian quadrature the change in the shape of the cross section does not affects negatively the element efficiency. The presented method was verified using selected numerical tests. They show good relatively agreement with the reference results. Apart from the analysis of the beams with the circular cross section, a possibility of further modifications in the methods of the element integration is also discussed. Due to the fact that locking influence on the convergence of the element is also observed, the methods of locking elimination in the proposed elements are also considered in the paper.


Author(s):  
Manish Kumar ◽  
Pronab Roy ◽  
Kallol Khan

From the recent literature, it is revealed that pipe bend geometry deviates from the circular cross-section due to pipe bending process for any bend angle, and this deviation in the cross-section is defined as the initial geometric imperfection. This paper focuses on the determination of collapse moment of different angled pipe bends incorporated with initial geometric imperfection subjected to in-plane closing and opening bending moments. The three-dimensional finite element analysis is accounted for geometric as well as material nonlinearities. Python scripting is implemented for modeling the pipe bends with initial geometry imperfection. The twice-elastic-slope method is adopted to determine the collapse moments. From the results, it is observed that initial imperfection has significant impact on the collapse moment of pipe bends. It can be concluded that the effect of initial imperfection decreases with the decrease in bend angle from 150∘ to 45∘. Based on the finite element results, a simple collapse moment equation is proposed to predict the collapse moment for more accurate cross-section of the different angled pipe bends.


Author(s):  
Georges Griso ◽  
Larysa Khilkova ◽  
Julia Orlik ◽  
Olena Sivak

AbstractIn this paper, we study the asymptotic behavior of an $\varepsilon $ ε -periodic 3D stable structure made of beams of circular cross-section of radius $r$ r when the periodicity parameter $\varepsilon $ ε and the ratio ${r/\varepsilon }$ r / ε simultaneously tend to 0. The analysis is performed within the frame of linear elasticity theory and it is based on the known decomposition of the beam displacements into a beam centerline displacement, a small rotation of the cross-sections and a warping (the deformation of the cross-sections). This decomposition allows to obtain Korn type inequalities. We introduce two unfolding operators, one for the homogenization of the set of beam centerlines and another for the dimension reduction of the beams. The limit homogenized problem is still a linear elastic, second order PDE.


Author(s):  
B. L. Josefson ◽  
J. Alm ◽  
J. M. J. McDill

The fatigue life of welded joints can be improved by modifying the weld toe geometry or by inducing beneficial compressive residual stresses in the weld. However, in the second case, the induced compressive residual stresses may relax when the welded joint is subjected to cyclic loading containing high tensile or compressive stress peaks. The stability of induced compressive stresses is investigated for a longitudinal gusset made of a S355 steel. Two methods are considered; either carrying out a high frequency mechanical impact (HFMI) treatment after welding or alternatively using low transformation temperature (LTT) electrodes during welding. The specimen is then subjected to a cyclic loading case with one cycle with a tensile peak (with magnitude reaching the local yield stress level) followed by cycles with constant amplitude. A sequential finite element analysis (FEA) is performed thereby preserving the history of the elasto-plastic behavior. Both the welding process and the HFMI treatment are simulated using simplified approaches, i.e., the welding process is simulated by applying a simplified thermal cycle while the HFMI treatment is simulated by a quasi-static contact analysis. It is shown that using the simplified approaches to modelling both the welding process and HFMI treatment gives results that correlate qualitatively well with the experimental and FEA data available in the literature. Thus, for comparison purposes, simplified models may be sufficient. Both the use of the HFMI treatment and LTT electrodes give approximately the same compressive stress at the weld toe but the extent of the compressive stress zone is deeper for HFMI case. During cyclic loading it is shown that the beneficial effect of both methods will be substantially reduced if the test specimen is subjected to unexpected peak loads. For the chosen load sequence, with the same maximum local stress at the weld toe, the differences in stress curves of the HFMI-treated specimen and that with LTT electrodes remain. While the LTT electrode gives the lowest (compressive) stress right at the well toe, it is shown that the overall effect of the HFMI treatment is more beneficial.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Mahdi Kiani ◽  
Roger Walker ◽  
Saman Babaeidarabad

One of the most important components in the hydraulic fracturing is a type of positive-displacement-reciprocating-pumps known as a fracture pump. The fluid end module of the pump is prone to failure due to unconventional drilling impacts of the fracking. The basis of the fluid end module can be attributed to cross bores. Stress concentration locations appear at the bores intersections and as a result of cyclic pressures failures occur. Autofrettage is one of the common technologies to enhance the fatigue resistance of the fluid end module through imposing the compressive residual stresses. However, evaluating the stress–strain evolution during the autofrettage and approximating the residual stresses are vital factors. Fluid end module geometry is complex and there is no straightforward analytical solution for prediction of the residual stresses induced by autofrettage. Finite element analysis (FEA) can be applied to simulate the autofrettage and investigate the stress–strain evolution and residual stress fields. Therefore, a nonlinear kinematic hardening material model was developed and calibrated to simulate the autofrettage process on a typical commercial triplex fluid end module. Moreover, the results were compared to a linear kinematic hardening model and a 6–12% difference between two models was observed for compressive residual hoop stress at different cross bore corners. However, implementing nonlinear FEA for solving the complicated problems is computationally expensive and time-consuming. Thus, the comparison between nonlinear FEA and a proposed analytical formula based on the notch strain analysis for a cross bore was performed and the accuracy of the analytical model was evaluated.


Author(s):  
Bohua Sun

By introducing a variable transformation $\xi=\frac{1}{2}(\sin \theta+1)$, a complex-form ordinary differential equation (ODE) for the small symmetrical deformation of an elastic torus is successfully transformed into the well-known Heun's ODE, whose exact solution is obtained in terms of Heun's functions. To overcome the computational difficulties of the complex-form ODE in dealing with boundary conditions, a real-form ODE system is proposed. A general code of numerical solution of the real-form ODE is written by using Maple. Some numerical studies are carried out and verified by both finite element analysis and H. Reissner's formulation. Our investigations show that both deformation and stress response of an elastic torus are sensitive to the radius ratio, and suggest that the analysis of a torus should be done by using the bending theory of a shell.


2019 ◽  
Vol 16 (3) ◽  
pp. 448-475
Author(s):  
Vladimir Kobelev

Purpose The purpose of this paper is to develop the method for the calculation of residual stress and enduring deformation of helical springs. Design/methodology/approach For helical compression or tension springs, a spring wire is twisted. In the first case, the torsion of the straight bar with the circular cross-section is investigated, and, for derivations, the StVenant’s hypothesis is presumed. Analogously, for the torsion helical springs, the wire is in the state of flexure. In the second case, the bending of the straight bar with the rectangular cross-section is studied and the method is based on Bernoulli’s hypothesis. Findings For both cases (compression/tension of torsion helical spring), the closed-form solutions are based on the hyperbolic and on the Ramberg–Osgood material laws. Research limitations/implications The method is based on the deformational formulation of plasticity theory and common kinematic hypotheses. Practical implications The advantage of the discovered closed-form solutions is their applicability for the calculation of spring length or spring twist angle loss and residual stresses on the wire after the pre-setting process without the necessity of complicated finite-element solutions. Social implications The formulas are intended for practical evaluation of necessary parameters for optimal pre-setting processes of compression and torsion helical springs. Originality/value Because of the discovery of closed-form solutions and analytical formulas for the pre-setting process, the numerical analysis is not necessary. The analytical solution facilitates the proper evaluation of the plastic flow in torsion, compression and bending springs and improves the manufacturing of industrial components.


Author(s):  
Suraj Joshi ◽  
Cumali Semetay ◽  
John W. H. Price ◽  
Herman Nied

Heavily welded circular hollow cross sections (CHS) are a common feature in civil structures such as draglines used in the mining industry and other off-shore structures. The sheer mass of the weldment and the application of intense heat generated during the welding process give birth to significant residual stresses in the structure. Often, residual stresses are high enough to act to accelerate factors such as corrosion, crack growth and fatigue. The objective of this research investigation was to predict welding generated residual stresses in a typical CHS T-Joint using Sysweld+, a welding Finite Element Analysis software. The T-joint is the first of the four lacings welded on to the main chord of a BE 1370 mining dragline cluster (designated All) of a type which is often used in the mining industry in Australia. This work examines a massive 3-dimensional geometry, which is on a much larger scale than those examined in existing studies. The paper presents the results of the simulation of residual stresses generated during the welding process in a single weld pass and compares them with the approach used in the commonly used document R6-Revision 4, Assessment of the Integrity of Structures Containing Defects.


Sign in / Sign up

Export Citation Format

Share Document